-
超高ニッケルLiNi0.91Co0.06Al0.03O2@Ca3(PO4)2カソード材料の強化されたリチウム貯蔵安定性メカニズム 著者: 朱和真、王玄鵬、韓康、楊陳、万瑞哲、呉立明、麻利強。超高ニッケル LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 カソード材料の強化されたリチウム貯蔵安定性メカニズム。無機材料ジャーナル、2022 年、37(9): 1030-1036 DOI:10.15541/jim20210769 新しいリチウムイオン電池のカソードとしての超高ニッケル材料は、その高い比容量、高電圧、および低コストのために多くの注目を集めています。しかし、サイクル中に生成されたマイクロクラック、機械的粉砕、および不可逆的な相転移により、サイクル安定性が低下します。ここでは、Ca3(PO4)2 でコーティングされた一連の超高ニッケル LiNi0.91Co0.06Al0....
続きを読む
-
リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク 著者:ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン。リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク。無機材料ジャーナル[J]、2021、36(2): 203-209 DOI:10.15541/jim20200161 TOBニューエナジー は、リチウム イオン電池、 ナトリウムイオン電池、 硫黄電池、全 固体 電池 さまざまな 電池材料 を提供し ています 。 お 見積り はお問い合わせください。 リチウム硫黄 (Li-S) 電池には硫黄元素が含まれており、天然に豊富に存在し、低コストで、比容量が大きい (1672 mAh∙g-1) という利点があります。しかし、硫黄元素の電気伝導率が低い (5×10-30 S·cm-...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質の Fe4[Fe(CN)6]3 (HQ-FeHCF) ナノキューブは、単純な熱水法によって合成されました。その構造、形態および含水量が特徴付けられます。Fe4[Fe(CN)6]3 は正立方体の形状を示し、均一なサイズは約 100 mm です。面心立方相に属する 500 nm。Fe4[Fe(CN)6]3 は、1C、2C、5C、10C、20C、30C、および 40C レートで、それぞれ 124、118...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 パート 2: Fe4[Fe(CN)6]3 ナノキューブの構造キャラクタリゼーション 図 1(a) は、HQ-FeHCF と LQ-FeHCF の XRD パターンを示しています。図から、HQ-FeHCF のすべての回折ピークが JCPDS NO. と一致していることがわかります。01-0239 カード。合成された HQ-FeHCF は、fm-3m 空間点群 a=b=c=0.51 nm、α=β=γ=90°...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験 最初に、Na-H2O-PEG 電解質中の HQ-FeHCF および LQ-FeHCF の電気化学的性能を、3 電極システムを使用してテストしました。図 4(a) は、1 mV s-1 のスキャン レートでの Na-H2O-PEG 電解液中の HQ-FeHCF および LQ-FeHCF のサイクリック ボルタンメトリー曲線を示しています...
続きを読む
-
リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、何・ハイチュアン、ウー・ジエ、張夢源、李雅娟、劉友年 中南大学化学・化学工学部、マイクロ&ナノ材料界面科学の湖南省重点実験室、中国長沙市410083 要約 リチウム硫黄電池は、エネルギー貯蔵用のコスト効率が高く、エネルギー密度の高い次世代システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、酸化還元反応速度の遅さにより、深刻な容量低下とレート性能の低下が生じます。ここでは、コバルトナノ粒子が埋め込まれたクエン酸ナトリウム由来の三次元中空炭素骨格が、硫黄陰極のホストとして設計されています。導入されたコバルトナノ粒子は、多硫化物を効果的に吸着し、変換反応の速度論を強化し、サイクル性能とレート性能をさらに向上させることができます。得られた正極は、0.5C で 12...
続きを読む
-
電池スラリーは粘度の高い固液です。 二相サスペンション システムを使用し、このシステムの安定性を評価するには、 最初のステップは、その組成と機能特性を研究することです。ほとんどの リチウム産業では、混合して形成される混合物である石油ベースのスラリーが使用されます。 活物質、結着剤、導電剤、溶剤等を分散させる。 一定の比率と順序。 カソードアクティブ 材料 メインとして カソードスラリー中の電気化学的活性成分、カソード活物質 電圧、エネルギー密度、その他の基本特性を決定します。 バッテリーであり、スラリーシステムの核心です。粒子サイズ 分布、比表面積、pHまたは残留アルカリ値など 活物質の特性はスラリーの安定性に影響します。 粒子 サイズ分布: 粒子 活物質のサイズと粒度分布は重要です スラリー製造プロセスにおける重要な要素。活性物質の粒子が小さいほど、 材料の粘度が高いほど、連続相の粘度は...
続きを読む
-
電池正極スラリーの調製方法
Jun 02 , 2023
電池正極スラリーの調製方法 湿式電極作製工程 カソード電極としてダブルプラネタリーミキサーを使用したスラリー調製装置。まず、ポリフッ化ビニリデン(PVDF)接着剤を準備します。通常の混合タンクを使用して、まず溶剤NMP(N-メチルピロリドン)を一定量注ぎ、設計された固形分含有量に従ってバインダーPVDF粉末を加え、4〜6時間撹拌してPVDF接着剤を得る。 PVDF接着剤は一定の粘度を持った無色透明の液体で、固形分含有量は必要に応じて5%~10%の間で制御できます。調製した接着剤溶液は通常、撹拌プロセス中に発生する気泡を除去するために真空引きし、12 時間以上放置する必要があります。次に、密閉されたパイプラインを通って定量ポンプを介して一定量がスラリー調製ミキサーに送られます。導電剤SPを加え、ミキサーを回転させながら同時に回転させます。公転速度を(25±5)r/min、自転速度を(500±...
続きを読む
-
リチウムイオン電池は広く使われています。 高いエネルギー密度と長いサイクル寿命により、さまざまな分野で使用されています。 環境への優しさ。アノード電極スラリーが鍵の一つ 性能と安全性に影響を与えるリチウムイオン電池の成分 バッテリーの。したがって、準備を理解することが重要です アノード電極スラリーの製造方法と注意事項 陽極の作製工程 電極スラリーは原料調製、 混合、コーティング、乾燥。 1. 原料の準備 生の アノード電極スラリーの材料には主に活物質が含まれており、 導電剤、バインダー、溶剤。活物質がメインです グラファイト、シリコン、バッテリー内のリチウムイオンと電子の供給源。 錫およびその合金または複合物。導電剤は改善のために使用されます。 スラリーとカーボンなどの電極の導電率 黒、グラフェン、カーボンナノチューブ。バインダーは活性物質を結合するために使用されます。 材料と導電剤を一緒...
続きを読む
-
Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料 孔国強、レン・ミンツェ、周振栄、夏 チー、シェン・シャオファン。 Sb ドープ O3 タイプ Na0.9Ni0.5Mn0.3Ti0.2O2 カソード Naイオン電池用素材[J]。無機材料ジャーナル、2023、38(6): 656-662. 要約 サイクル安定性と比容量 ナトリウムイオン電池の正極材料は、 その幅広い用途。具体的な導入戦略に基づき、 ヘテロ元素を使用して構造安定性と比容量を最適化します。 正極材料、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、 0.06)を簡単な固相反応法で調製したSbの効果 Na0.9Ni0.5Mn0.3Ti0.2O2のナトリウム貯蔵特性に及ぼすドーピング量 正極材料を調査した。特性評価の結果は、 遷移金属中の酸...
続きを読む
-
最近の進捗状況 硫化物系全固体リチウム電池用負極 →パート 1 リチウム金属負極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1.学校 上海交通大学機械工学科、上海 200241、中国 2.上海 伊利新エネルギー技術有限公司、上海 201306、中国 要約 全固体リチウム電池 (ASSLB) はより高いエネルギー密度を示す 現在主流の液体リチウム電池よりも安全性が高い 次世代エネルギー貯蔵デバイスの研究の方向性。と比較して 他の固体電解質、硫化物固体電解質 (SSE) には、 超高イオン伝導率、低硬度、容易な特性 加工性と良好な界面接触は、最も有望な要素の 1 つです。 全固体電池実現への道筋。ただし、いくつかあります。 アノードと SSE の間の界面の問題により、用途が制限されます。 界面副反応、剛性接触不良、リチウムデンドライトなど。これ この...
続きを読む
-
前回の記事の続き 最近の進捗状況 硫化物系全固体リチウム電池用負極 ââ パート 2 その他 陽極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1.学校 上海交通大学機械工学科、上海、200241、中国 2.上海 伊利新エネルギー技術有限公司、上海 201306、中国 リチウム合金負極 界面副反応が激しいため、 純粋なリチウムをそのまま硫化物固体電解質に利用することは困難です。 短期的には、リチウム合金材料がより魅力的な選択肢となります。 金属リチウム負極と比較して、リチウム合金負極は性能を向上させることができます。 界面濡れ性、界面副反応の発生を抑制、 固体電解質の化学的および機械的安定性を向上させる 界面を保護し、リチウム樹枝状結晶の成長による短絡を回避します。で 同時に、液体リチウムイオン電池と比較して、合金アノードは 全固体電池のエネルギー...
続きを読む
-
正極の電気化学活性 P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池の材質 著者: ZHANG Xiaojun1、LI Jiale1,2、QIU Wujie2,3、YANG Miaosen1、LIU Jianjun2,3,4 1.バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2.中国科学院上海陶磁器研究所、高性能セラミックスおよび超微細微細構造の国家重点実験室、上海 200050、中国 3.中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4.中国科学院大学杭州高等研究院化学材料科学院、杭州市 310024、中国 要約 低コストと幅広い原材料の流通という利点を活かし、 ナトリウムイオン電池は、次のような用途に最適な代替材料と考えられています。 リチウムイオン電池の正極材。 P2 相では ...
続きを読む
-
LaNi0.6Fe0.4O3 カソード接点材質: 導電性 特性操作と SOFC の電気化学的性能に対するその影響 ZHANG Kun、WANG Yu、ZHU Tenglong、SUN Kaihua、 ハン・ミンファン、チョン・チン。 LaNi0.6Fe0.4O3 カソード 接点材質: 導電特性の操作とその効果 SOFC の電気化学的性能に関する[J]。無機材料ジャーナル、DOI: 10.15541/jim20230353. カソードとインターコネクタの接点の模式図 インターフェース フラットの組み立て工程中 固体酸化物型燃料電池 (SOFC) スタック、セラミック間の直接接触 カソードと金属コネクタが劣化しており、ストレスが高くなります。簡単に 大きな界面接触抵抗が発生し、それが影響を及ぼします。 スタックのパフォーマンスと安定性。カソードコンタクト層は通常、 界面の接触を改善するためにカ...
続きを読む
-
1.リン酸鉄マンガンリチウムとは リチウム リン酸鉄マンガンは、リチウムをドープして形成された新しい正極材料です 一定量のマンガン元素を含むリン酸鉄。イオン以来 マンガン元素と鉄元素の半径と一部の化学的性質は類似しています。 リン酸マンガン鉄リチウムとリン酸鉄リチウムは類似しています。 構造があり、両方ともオリビン構造を持っています。エネルギーの観点から見ると 密度、リン酸鉄マンガンリチウムは鉄リチウムより優れています リン酸塩であるため、「鉄リチウムの改良版」とみなされます。 リン酸塩」。 リチウム リン酸鉄マンガンは、エネルギー密度のボトルネックを突破することができます。 リン酸鉄リチウム。現在、鉄リチウムの最大エネルギー密度は、 リン酸塩は161~164Wh/kg程度で安定しています。リン酸塩系材料として より高いエネルギー密度を備えたリン酸鉄マンガンリチウムの応用 リン酸鉄リチウム...
続きを読む
-
Fドープカーボンコーティング 高容量のナノ Si アノード: ガス状フッ素化と リチウム ストレージのパフォーマンス 著者: 蘇南、邱潔山、王志宇。 Fドープ 高容量のカーボンコーティングされたナノシリコンアノード: ガス状フッ素化による調製 リチウムストレージのパフォーマンス。 無機材料ジャーナル、2023、38(8): 947-953 DOI:10.15541/jim20230009 要約 Si陽極は高エネルギーリチウムイオンの開発において計り知れない可能性を秘めています 電池。しかし、Liの取り込みによる体積の大きな変化による急速な破損が妨げになります。 彼らのアプリケーション。この研究は、簡単かつ低毒性のガスフッ素化を報告します。 Fドープされた炭素被覆ナノSiアノード材料を生成する方法。のコーティング 高い欠陥を含む F ドープ炭素を含むナノ Si は、Si を効果的に保護できま...
続きを読む
-
リチウムイオン 電池負極材料の分類 鍵の一つとして リチウムイオン電池用材料、負極材料が満たす必要がある 複数の条件。 Liの挿入および脱離反応は酸化還元電位が低い リチウムイオン電池の高出力電圧を満たす。 Li の挿入と脱離のプロセス中に、 電極電位の変化はほとんどないため、バッテリーにとって有益です。 安定した動作電圧が得られます。 高エネルギー密度に対応する大きな可逆容量 リチウムイオン電池 Li 脱インターカレーションプロセス中の構造安定性が良好であるため、 バッテリーのサイクル寿命が長いということです。 環境に優しく、環境汚染や汚染がありません。 製造時および電池の廃棄時における中毒。 準備プロセスが簡単で、コストが低く、リソースも少ない 豊富で入手しやすいなど 技術的に 進歩と産業の高度化に伴い、負極材料の種類も変化しています。 増加しており、新しい物質が絶えず発見されてい...
続きを読む
-
充放電過程中 バッテリーの充電深度と放電深度が変化すると、電圧も変化します。 常に変化しています。水平座標と電圧として容量を使用する場合 垂直座標として、単純な充放電曲線を取得できます。 これには、バッテリーの電気的性能に関する多くの手がかりが含まれています。これら 時間、容量、SOC、 充電や放電に関わる電圧などを座標として電荷といいます。 そして放電曲線。ここでは、一般的な充電曲線と放電曲線をいくつか示します。 時間-電流/電圧曲線 →定電流 定電流充電時と 放電中、電流は一定、バッテリー端子の変化 電圧も同時に収集され、電圧の検出によく使用されます。 バッテリーの放電特性。放電プロセス中に、 放電電流は変化せず、バッテリー電圧は低下し、 放電電力も減少し続けます。サンプル曲線を次の図に示します。 以下の図。 …定電流・定電圧 (充電中) 定電流充電と比べて、 定電流定電圧充電には定電...
続きを読む
-
最近、 化学工学部の張強教授のチーム 清華大学がバルク/表面界面に関する研究結果を発表 リチウムに富むマンガン系正極材料の構造設計 全固体金属リチウム電池。彼らは現場のバルク/表面を提案しました。 界面構造制御戦略を確立し、高速かつ安定なLi+/e-経路を構築し、リチウムリッチの実用化を推進 全固体リチウム電池のマンガンベースの正極材料。 電池は 現代のエネルギー分野で重要な役割を果たし、さまざまな分野で大きな成功を収めています。 ポータブル電子機器、電気自動車、グリッドスケールのエネルギー貯蔵 アプリケーション。ただし、バッテリーのエネルギー密度を向上させると同時に、 バッテリーの安全性が鍵です。需要の急速な成長に伴い、 電池のエネルギー密度を向上させる、従来のリチウムイオン電池 従来の正極材料と有機物に依存する技術 電解質は長期サイクルで技術的なボトルネックに直面しています 安定性、広...
続きを読む
-
王崑鵬 ,1, 劉昭林 2, 林坤生 2, 王志宇 ,1,2 1.中国大連116024、大連理工大学化学工学部ファインケミカル国家重点実験室 2.新材料開発支店、ヴァリアント株式会社、煙台市 265503、中国 要約 リチウムイオン電池と比較して、ナトリウムイオン電池は、低コスト、優れた低温性能、安全性という利点を備えており、コストと信頼性が重視される用途で大きな注目を集めています。高容量で低コストのプルシアンブルー様材料 (PBA) は、Na イオン電池の正極材料として有望です。しかし、その構造内に結晶水が存在すると、バッテリーの性能低下が急速に引き起こされ、その用途を制限する重大なボトルネックとして機能します。この研究では、PBA 正極材料から結晶水を効果的に除去し、340 サイクル後の容量維持率を 73% から 88% に向上させるための容易な熱処理戦略を報告しています。現場分析によ...
続きを読む