-
動作モードに応じて、に分けることができます:手動巻線機、半自動巻線機、自動巻線機。リチウム電池巻線機とコンデンサー巻線機、バイヤーは通常、分類に基づいて、主に国内巻線機、巻線マシン、韓国日本巻線機。 電池メーカーは一般的に小規模 低価格のため、国内の巻線機を選択します。多数のバッテリーメーカーを使用する巻線機は、byd、atl、bak、god、samsung、lgなどの韓国と日本の巻線機を使用しています。 近年では、 リチウム電池巻線機 そして、コンデンサー巻線機韓国韓国電気機械式koemは、第一に、技術が成熟していて信頼性が高く、手頃な価格で、販売サービスが非常にタイムリーであるため、大きな市場シェアを占めます。日本の小さな島国とわが国の紛争において、韓国の巻線機市場はますますシェアを占めています。 化学繊維紡績ユニットのメインユニット。溶融紡糸を指し、発生期の繊維(フィラメントまたはス...
続きを読む
-
電気ラボロールプレス機
Dec 16 , 2019
私たちは多かれ少なかれ見たいくつかの大きな工場を持っています ローラープレス 。確かにローラープレスの誰もがそれほど理解していません。ここで私は皆のために私たちの会社の主力製品ロールプレスを詳しく説明します。 ローラープレスと一連の壊れた分級機、特にシステムを新しい効率的な予備粉砕として使用するプロセスで構成されるオープンセメントミルロール粉砕システムを備えた予備粉砕システム 装置 、ミルへの材料の粒子サイズを効果的に小さくして、台湾へのミルの生産を改善し、摩耗や破砕を減らすことができます。ライナーおよびその他のコンポーネントは、既存のジョイント研削システムに基づいて各デバイスの遊び生産の可能性を介して、最終的に高歩留まり、低消費目的、保護を達成します 機器の安全な操作 前提の下で、より高い経済効率を達成するため。 ローラープレス(押出ミル、圧延ミルとも呼ばれます)は、1980年代中期に国...
続きを読む
-
リチウムイオン電池の場合、 正極材 使用できるものは、大きな可逆容量、高い可能性と安定性、無毒で低生産コストの特性を満たす必要があります。現在、リン酸鉄リチウムは、リチウムイオン電池の最も一般的な正極材料です。ただし、lifepo4は導電率が低く、リチウムイオン移動度が低くなっています。 lifepo4材料をグラフェンと組み合わせると、その導電率と乗数の性能を理論的に向上させることができます。 グラフェン材料の特殊性のため、カソードグラフェン材料に関する研究は比較的ほとんど行われていません。研究によると、グラフェンを熱水法によってlifepo4の表面に直接コーティングした場合、複合材料の乗数性能はあまり良くありません。その理由は、グラフェン材料構造の積層または破壊である可能性があります。 lifepo4をグラフェンで包むことによって形成された材料は、lifepo4材料の導電率を向上させるこ...
続きを読む
-
の 電極コーティングマック ひねる リチウム電池の電極を製造するための重要な装置です。後続のローリング操作に直接影響し、さらにはバッテリー全体のパフォーマンスにも影響するためです。現在、主にリチウム電池の電極コーティングプロセスは、スクレーパータイプ、ロールツーロール転写コーティングタイプ、スリット押出タイプです。一般的に言って、実験装置はスクレーパータイプを採用し、3cバッテリーはロールツーロール転写コーティングタイプを採用し、パワーバッテリーはスリット押出タイプを採用しています。 スクレーパーコーティング:ホイル基材はコーティングローラーを通過し、直接スラリートラフに接触し、余分なスラリーはホイル基材にコーティングされます。ブレードとフォイル基板の間のギャップがコーティングの厚さを決定し、材料の表面が均一なコーティングを形成します。 ロールツーロール転写コーティング:コーティングローラ...
続きを読む
-
リチウムイオン電池の主要なコンポーネントには、カソード、アノード、電解質、膜などが含まれます。リチウムイオンエネルギーの貯蔵と放出は、電極材料のレドックス反応の形で実現され、カソード活性材料は、リチウムイオン電池。 リチウム電池の父であるgoodenough教授は、リチウム電池正極材料の研究に多大な貢献をしてきました。 1980年、イギリスのオックスフォード大学で働いていたとき、彼は コバルト酸リチウム(lco ) リチウムカソードとして使用できます。 1981年に、彼はの実現可能性に言及しました ニッケル酸リチウム (linio2、別名lno)lco特許のカソード材料として。 1983年に、彼は使用する彼の最初の試みをしました マンガン酸リチウム(lmo) リチウムイオン電池の正極材料として。 1997年に、彼は開発しました リン酸鉄リチウム (lifepo4、またはlfp)、これはかん...
続きを読む
-
前書き: ポリフッ化ビニリデンバインダー(PVDF) 現在、リチウムイオン電池業界で最も一般的に使用されているオイルバインダーです。それは非極性鎖ポリマーバインダーです。強力な耐酸化性、優れた熱安定性、容易な分散が特徴です。 n-メチルピロリドン(nmp) 溶剤として必要です。この溶媒は揮発温度が高く、特定の環境汚染があり、高価です。 明らかな欠陥は次のとおりです。 1)ヤング率は比較的高く、1〜4 gpaで、pの柔軟性 oleピースは十分ではありません。 2)pvdfが水を吸収すると、分子量d 増加し、粘度が低くなるため、環境の湿度要件は比較的高くなります。 3)イオン絶縁および電子絶縁のために、電解液にはある程度の膨潤があります。高温でリチウム金属やlixc6と発熱反応し、バッテリーの安全性に悪影響を及ぼします。 結合メカニズム: 従来のpvdf、主な作用メカニズムはファンデルワールス...
続きを読む
-
大容量リチウム空気電池
Dec 16 , 2019
番目 e l リチウム空気電池 は 日本産業技術研究所と日本学術振興会(JSPS)が開発した新しいタイプの大容量リチウムイオン電池。バッテリーは負極としてリチウム金属を使用し、正極として空気中の酸素を使用し、電極は固体電解質によって分離されています。負極は 有機電解質 ;正極は 水性電解質 。 放電中、負極はリチウムイオンの形で有機電解質に溶解し、固体電解質を通って正極の水性電解質に移動します。電子はワイヤを介して正極に伝達され、空気中の酸素と水は微細炭化炭素の表面で反応します。過酸化水素が形成され、正極の電解質水溶液中でリチウムイオンと結合して、水溶性水酸化リチウムを形成します。充電すると、電子がワイヤを介して負極に伝達され、リチウムイオンが正極の固体電解質を通過して固体電解質を通って負極の表面に到達し、反応して負極の表面に金属リチウムを形成します電極;正極の水酸化物は、電子生成酸素...
続きを読む
-
が 高電圧リチウム電池材料 ますます注目を集めていますが、これらの高電圧アノード材料は、実際の生産とアプリケーションで依然として良い結果を達成することができません。最大の制限要因は、炭酸塩ベースの電解質の電気化学的安定ウィンドウが低いことです。バッテリー電圧が約4.5(vs.li/li+)に達すると、 電解液 激しい酸化分解が始まり、バッテリーのリチウム挿入とリチウム脱挿入が適切に機能しなくなります。高電圧に耐えることができる電解液システムの開発は、この新しい材料の適用を促進するための重要なステップです。 新しいの開発と応用 高電圧電解質システム または、電極/電解質界面の安定性を改善するための高電圧皮膜形成添加剤は、高電圧電解質を開発するための効果的な方法です。経済的には、後者がしばしば好まれます。電解質の電圧耐性を改善するためのそのような添加剤には、一般に、ホウ素、有機リン、炭酸塩、硫...
続きを読む
-
の バッテリーセパレーター リチウムイオン電池の伝導リチウムイオンと正極と負極の電子接点間の絶縁に大きな役割を果たします。これは、充放電の電気化学的プロセスを完了するためにバッテリーをサポートする重要なコンポーネントです。 リチウム電池を使用する場合、電池が過充電または高温になると、セパレーターは十分な熱安定性(熱変形温度&gt; 200℃)を持つ必要があり、電池の正極と負極の接触を効果的に分離し、短絡を防止します。熱暴走、さらには爆発事故として。現在広く使用されているポリオレフィンセパレーター、その融点および低い軟化温度(<165℃)、バッテリーの安全性を効果的に保証することは困難であり、その低い多孔性および低い表面エネルギーは、バッテリー性能比を制限します。したがって、開発することは非常に重要です 高安全高温セパレーター 。 厦門トブ新エネルギー 研究部門は、湿式プロセス一次成形...
続きを読む
-
リチウムに富むマンガンベース(xli [li1 / 3-mn2 / 3] o2;(1–x)limo2、mは遷移金属0≤x≤1、構造はlicoo2に類似)は高放電特定の容量。これは、現在使用されている正極材料の実際の容量の約2倍であるため、リチウム電池材料として広く研究されています。さらに、この材料には大量のmn元素が含まれているため、licoo2および三元材料li [ni1 / 3mn1 / 3co1 / 3] o2よりも環境に安全で安価です。したがって、xli [li1 / 3-mn2 / 3] o2; (1–x)limo2素材は、次世代の理想的な素材として多くの学者によって検討されています リチウムイオン電池正極材 。 現在、共沈法は主にリチウムに富むマンガンベースの材料を調製するために使用されており、一部の研究者はゾルゲル法、固相法、燃焼法、水熱法およびその他のプロセスを使用して調製...
続きを読む
-
リチウム イオン電池 大容量、高比エネルギー、優れた サイクル寿命とメモリー効果なし。リチウムイオン電池は急速に発展しています そしてその能力は、最も重要なパフォーマンス指標として、 研究者の注意。 対応して、 リチウム電池パック 大容量、高速で継続的に開発しています 充電、長寿命、高い安全性、これも新しい要件を提唱 その製造プロセスにおける技術のために。 リチウム イオン電池パック 主に後に電気的性能試験を実施するために使用されます セルは、決定するために、スクリーニング、構成、パッケージ、および組み立てられます。 容量と圧力差が認定製品かどうか。 電池 直並列モノマーは特別な配慮が必要な間の一貫性です バッテリーパックでは、内部などの良好な容量、充電状態のみ 抵抗、自己放電の一貫性が再生および解放するために達成できます、 一貫性が悪いとバッテリー全体に深刻な影響を与える可能性がある場合...
続きを読む
-
リチウムイオン電池 一種のエネルギーです ストレージデバイス、現在一般的に使用されているリチウムイオン電池 正極材はリン酸鉄リチウム電池に分けることができ、 三元電池およびマンガン酸リチウム電池。リチウム鉄を取る 例としてリン酸塩電池:放電するとき、中のリン酸鉄 正極と負極から移動したリチウムイオン 電解液と外部回路から転送された電子を介して リン酸鉄リチウムを形成するために組み合わせる。に埋め込まれたリチウム 負極の黒鉛層が逃げてリチウムイオンになります そして電子は電解質を通って陽極に移されました および外部回路それぞれ。 の 燃料電池 私 本質的に一種の 燃料と酸化剤が電気に変換される発電機 燃焼せずに直接電気化学反応によって。したがって、燃料電池 カルノーサイクルによって制限されておらず、高いエネルギー変換を持っています 効率。燃料電池は、電力変換と同じくらい60%効率的であること...
続きを読む
-
電極塗布後、電極乾燥 オーブンで処理すると、コーティングされた電極が緩くなります。直接使用すると、カソード材料とアノード材料が電解液に浸された後、脱落して損傷しやすくなります。電極 によって押すことができます バッテリー電極ローラーマシン 。安定性、堅さ プレスした電極の電気化学的特性が改善され、 テストのパフォーマンスは、プレスされていないサンプルよりも優れていました。 の主な目的は2つあります。 バッテリー電極 ローリングプレス :1つ目は、バリを取り除き、表面を滑らかで平らにすることです。 バッテリーを取り付けてダイヤフラムを突き刺す際のバリを防ぎ、 短絡を引き起こします。第二は、ポールの強度を高めることです インピーダンス。圧力が高すぎる場合、フィルムはカールしますが、 バッテリーの組み立てに役立ちます。 電極のローリングのプロセスでは、電極を圧縮する必要があります。の 電極 ラボ...
続きを読む
-
リチウムチップ 金属リチウムチップ の研究室を提供できる よ源のリチウム、リチウムチップは、不純物の少ない、 サイズは大きい電極を測定する、 純度のリチウムチップは以下の99.9%. 一般要求事項 リチウムチップの作成サイズ:直径15時~15.8mm( 対応する電極のサイズが14mmのためのCR2032ボタンセル)、厚さ 0.5~0.8mm、表面直進、銀白色の光、石油スポット、ミシン目 または催涙. チウムイオン電池のセパレーター タイプのチウムイオン電池のセパレーターを選択する による実験的要件、一般的に断熱フィルム ナノメートルの細孔の選択が可能で、双方向のイオン輸送後 吸着の電解液、シングルまたは多層ポリエチレンやポリプロピレン 膜という言葉がよく用いられます。 のチウムイオン電池のセパレーターを用意したレギュ 丸い形によるパンチングマシンのサイズはより大きいリチウム 金属チップの電...
続きを読む
-
チリチウム細胞の生産プロセス
Jun 19 , 2020
リチウム電池袋 指 アルミラミネートしたフィルム た場合は、梱包のバッテリーです。 に比べてスクエアアルミシェル回しや電池円筒型電池袋リチウム電池の発生時の安全性危険有害性のガス拡大は、エネルギーを放出しから、被害の拡大を食い止めました。 これは容易ではないと爆発します。 同時に、 リチウム電池袋 同じ容量が軽く、より高いエネルギー密度によるスクエアアルミシェルバッテリーです。 また、形状のパウチリチウム電池できるカスタマイズにも対応し、お客さまのニーズに、デザインがより柔軟に、より有利なの開発の新しいモデルです。 買付け等の新エネルギー を提供できるカスタマイズサービス 形成され パウチの細胞の場合 に応じてお客様の試験を行うことが重要です。 もちろん、デメリットをポーチリチウム電池です。 現在は、 アルミラミネートしたフィルム 生産工程の自動化、生産ラインなどのスクエアアルミシェルの生...
続きを読む
-
多くの種類があり 正極材料 リチウムイオン電池です。 別の違いに正極材料 彼らは大きく分けて LiNiMnCoO2NMC(NCM正極材料 , LiNiCoAlO2NCA正極材料 , LiFePO4LFP正極 , LiCoO2LCO陰極 , LiMn2O4LMO陰極 や Li4Ti5O12LTO 材料 . 三元系リチウム電池とはリチウム電池を使用する三 遷移金属酸化物の酸化ニッケル、コバルトおよびマンガンとして、カソード電極 素材です。 その長所を兼ね備えたリチウムコバルト酸化物、リチウムニッケル 酸リチウムマンガン酸、そのパフォーマンスに優れます。 公開買付けには、高性能-高容量正極材料 グローバルリチウム電池の製造-研究する。 複素材であるリチウム電池 正極材料の優れた総合性能 の変更 モル比の材料を一定の範囲内で、 対応する添加剤 電池のバインダー , 導電性添加剤 , 現在の 集電箔...
続きを読む
-
PEDOT材料導電性高分子
Jul 17 , 2020
最も広く使用されている電池はリチウム電池、リチウム電池また、いくつかの問題ではありません。 の問題であること リチウム電池 陰極 生産過剰酸素と反応し 電解質 の原因とな薄膜を形成し表面の 電池正極 低減、エネルギー移動およびこのように全体の性能の電池です。 この問題を解決するには、陰極でリチウムイオン電池は、コートと特殊コーティング材料を削減する新しい結論を得た。 しかし、この効率を低下させ、電池による経年劣化が生じる可能性が高温連続電圧を実現することで、電池の寿命です。 にした新しい研究では、研究者が開発した新しいコーティング材料 導電性高分子材料PEDOT えくリチウムイオン電池より安全で長持ち。 この PEDOT材料導電性高分子 完全に保護し、陰極から反応、電解液. の PEDOT材料 使用ガスを確保するには、コーティングが施される各粒子の陰極を形成し強固な保護層します。 、従来の...
続きを読む
-
コバルト酸リチウム電池 成 コバルト酸化物系燃料電池 や 黒鉛質カーボン負極 . の LCO陰極 は層状構造の中で放電、リチウムイオンから負極を陰極に流れ反転時の電池は充電を可能にします。 高エネルギーがコバルト酸リチウム電池に人気の選択のための携帯電話、ノートパソコンやデジタルカメラであった。 デメリットのコバルト酸リチウム電池は比較的短寿命、低熱安定性と限定の負荷容量です。 のような他のコバルト混合したリチウムイオン電池、リチウムコバルト酸化物の使用 黒鉛電極 そのサイクル寿命は主に、 固体電解質界面 (SEI). これは主に現れたの緩やかな増粘のSEI膜と陽極のリチウムめっきの中で急速充電や低温での充電を可能にします。 コバルト酸リチウム電池は充放で現在より高くない。 こ18650電池2,400mAhで必要な時に必要な分だけで排出され以下2,400。 強制急速充電による負荷以上240...
続きを読む
-
三次元スピネル構造が形成され、建築、 後に、マンガン酸リチウム電池 を向上するとともに、イオンを流しの 電池電極 削減を実現することができる内部抵抗の改善"という概念に基づいます。 もう一つの利点のスピネルは、高い熱安定性、安全性向上が限定サイクルやカレンダー。 買付け等の新エネルギー 高充実度 l ithiumマンガン粉末 や LiMn2O4の正極材料 のためのlitium 電池正極材料 . お客様のすべてのリチウムイオン電池材料、機器のバッテリーの製造-研究する。 を形成する三次元結晶を骨格の陰極の後に、マンガン酸リチウムバッテリーです。 のスピネル構造は通常のダイヤモンド形状の接続の格子は通常表示後、電池を形成する。 スピネル低抵抗を下回ったものの固有のエネルギーをよりコバルト酸リチウム 低内部抵抗で高速充電-高流動排出します。 の18650細胞、後に、マンガン酸リチウム電池の放電す...
続きを読む
-
最も成功したリチウムイオンシステムの1つは、ニッケルマンガンコバルト(nmc)。お気に入りマンガン酸リチウム、システムは、エネルギーまたはパワーバッテリーとして使用するためにカスタマイズできます。たとえば、nmc中程度の負荷がかかる18650バッテリーの容量は約2,800mAで、4aから5aの放電電流を提供できます。特定の電力に最適化された同じタイプのnmcは、容量が2,000mAhですが、連続放電電流は20aです。シリコンアノードは4000mahを超えますが、負荷容量が減少し、サイクル寿命が短くなります。グラファイトに添加されたシリコンには欠陥があり、充放電に伴って負極が膨張・収縮するため、機械的ストレスが大きい電池の構造が不安定になります。nmcの秘密は、ニッケルとマンガンの組み合わせにあります。ニッケルは比エネルギーが高いことで知られていますが、安定性は劣ります。マンガンスピネル構造...
続きを読む