へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

Siアノード

  • カソード材料へのグラフェンの応用
    Dec 16 , 2019
    リチウムイオン電池の場合、 正極材 使用できるものは、大きな可逆容量、高い可能性と安定性、無毒で低生産コストの特性を満たす必要があります。現在、リン酸鉄リチウムは、リチウムイオン電池の最も一般的な正極材料です。ただし、lifepo4は導電率が低く、リチウムイオン移動度が低くなっています。 lifepo4材料をグラフェンと組み合わせると、その導電率と乗数の性能を理論的に向上させることができます。 グラフェン材料の特殊性のため、カソードグラフェン材料に関する研究は比較的ほとんど行われていません。研究によると、グラフェンを熱水法によってlifepo4の表面に直接コーティングした場合、複合材料の乗数性能はあまり良くありません。その理由は、グラフェン材料構造の積層または破壊である可能性があります。 lifepo4をグラフェンで包むことによって形成された材料は、lifepo4材料の導電率を向上させるこ...
    続きを読む
  • グラフェン材料の紹介
    Dec 16 , 2019
    グラフェン 酸化物 六角形のハニカム格子を備えた炭素原子で構成される2次元の平面ナノ材料です。c-c結合長は0.141 nm、理論密度は約0.77 mg / m2、厚さは炭素原子の直径程度です。炭素原子はsp2の方法でハイブリダイゼーションに参加し、電子は層間をスムーズに伝導できるため、グラフェンは電気を非常によく伝導します。それは、最小の抵抗率が知られている材料であり、これがグラフェンが電池の有望な将来をもたらす理由の1つです。 バッテリーグラフェン材料 優れた熱伝導率を持ち、単層の理論的な室温熱伝導率は最大3,000〜5,000w /(m * k)です。この特性は、バッテリー動作中の熱放散の研究に使用できます。優れた機械的特性を持ち、靭性と強度に優れた材料であり、フレキシブル電極材料の開発と研究に使用できます。加えて、グラフェンの高い比表面積と高い透過率も大きな研究価値があります。 厦...
    続きを読む
  • リチウム電池正極材
    Dec 16 , 2019
    リチウムイオン電池の主要なコンポーネントには、カソード、アノード、電解質、膜などが含まれます。リチウムイオンエネルギーの貯蔵と放出は、電極材料のレドックス反応の形で実現され、カソード活性材料は、リチウムイオン電池。 リチウム電池の父であるgoodenough教授は、リチウム電池正極材料の研究に多大な貢献をしてきました。 1980年、イギリスのオックスフォード大学で働いていたとき、彼は コバルト酸リチウム(lco ) リチウムカソードとして使用できます。 1981年に、彼はの実現可能性に言及しました ニッケル酸リチウム (linio2、別名lno)lco特許のカソード材料として。 1983年に、彼は使用する彼の最初の試みをしました マンガン酸リチウム(lmo) リチウムイオン電池の正極材料として。 1997年に、彼は開発しました リン酸鉄リチウム (lifepo4、またはlfp)、これはかん...
    続きを読む
  • リチウムイオン電池電極用のpvdfバインダー
    Dec 16 , 2019
    前書き: ポリフッ化ビニリデンバインダー(PVDF) 現在、リチウムイオン電池業界で最も一般的に使用されているオイルバインダーです。それは非極性鎖ポリマーバインダーです。強力な耐酸化性、優れた熱安定性、容易な分散が特徴です。 n-メチルピロリドン(nmp) 溶剤として必要です。この溶媒は揮発温度が高く、特定の環境汚染があり、高価です。 明らかな欠陥は次のとおりです。 1)ヤング率は比較的高く、1〜4 gpaで、pの柔軟性 oleピースは十分ではありません。 2)pvdfが水を吸収すると、分子量d 増加し、粘度が低くなるため、環境の湿度要件は比較的高くなります。 3)イオン絶縁および電子絶縁のために、電解液にはある程度の膨潤があります。高温でリチウム金属やlixc6と発熱反応し、バッテリーの安全性に悪影響を及ぼします。 結合メカニズム: 従来のpvdf、主な作用メカニズムはファンデルワールス...
    続きを読む
  • 高電圧耐性電解質
    Dec 16 , 2019
    が 高電圧リチウム電池材料 ますます注目を集めていますが、これらの高電圧アノード材料は、実際の生産とアプリケーションで依然として良い結果を達成することができません。最大の制限要因は、炭酸塩ベースの電解質の電気化学的安定ウィンドウが低いことです。バッテリー電圧が約4.5(vs.li/li+)に達すると、 電解液 激しい酸化分解が始まり、バッテリーのリチウム挿入とリチウム脱挿入が適切に機能しなくなります。高電圧に耐えることができる電解液システムの開発は、この新しい材料の適用を促進するための重要なステップです。 新しいの開発と応用 高電圧電解質システム または、電極/電解質界面の安定性を改善するための高電圧皮膜形成添加剤は、高電圧電解質を開発するための効果的な方法です。経済的には、後者がしばしば好まれます。電解質の電圧耐性を改善するためのそのような添加剤には、一般に、ホウ素、有機リン、炭酸塩、硫...
    続きを読む
  • 高電圧、高容量のリチウムに富む素材
    Dec 16 , 2019
    リチウムに富むマンガンベース(xli [li1 / 3-mn2 / 3] o2;(1–x)limo2、mは遷移金属0≤x≤1、構造はlicoo2に類似)は高放電特定の容量。これは、現在使用されている正極材料の実際の容量の約2倍であるため、リチウム電池材料として広く研究されています。さらに、この材料には大量のmn元素が含まれているため、licoo2および三元材料li [ni1 / 3mn1 / 3co1 / 3] o2よりも環境に安全で安価です。したがって、xli [li1 / 3-mn2 / 3] o2; (1–x)limo2素材は、次世代の理想的な素材として多くの学者によって検討されています リチウムイオン電池正極材 。 現在、共沈法は主にリチウムに富むマンガンベースの材料を調製するために使用されており、一部の研究者はゾルゲル法、固相法、燃焼法、水熱法およびその他のプロセスを使用して調製...
    続きを読む
  • 燃料電池の開発展望
    Apr 03 , 2020
    コアとして 燃料を交換した製品-動力車、新エネルギー車は より多くのユーザーによって受け入れられました。同様に、newのコンポーネントの1つとして エネルギー車、パワーバッテリーはますます有望な市場を持っています。として リチウムイオン電池およびスーパーキャパシター、tobの分野のハイテク企業 常に燃料電池の開発に取り組んできました。 新しいエネルギーを奪う の完全なセットを提供できます 燃料電池ソリューション 、私たちは提供することができます 燃料電池 材料 、 機械を作る燃料電池 そして 技術サポート 。私達はまた設計できます あなた自身の 燃料電池ラボ研究ライン 、 燃料電池パイロットラインと生産ライン あなたの要求に応じて工場で。 比較した 従来のパワーセルでは、燃料電池は直接電気に変換されます 電気化学反応を通じて。その結果、その全体的な発電 効率は通常のパワーバッテリーよりもは...
    続きを読む
  • 一段階と二段階のプレス加工法の開発により、電池電極
    Jun 01 , 2020
    一押しでは一度だけ達成のために設計の厚さと密度の 電池電極 . 二段階プレスで転がすと、電池電極への一定の厚みなどの90µm)一般的ですが、オプションの実現を目指し設計の厚さなどの70µmや希望密度の時間をプレスで実現します。 その主な目的は圧延プレスで制御する電極の設計範囲を剥離した場合、剥離強度は電極、および削減を伝送距離のリチウムイオンに変化します。 買付け等の新エネルギー を提供できるフルセット 電池電極圧延プレス機 システムのためのリチウムイオン電池の製造-研究する。 の 連続熱ローラープレス機 , 自動押さえローラー や ボプレス機 していない電池の電極です。 により、異なる材料システムのロール圧の反動により陰極電極は比較的小型のロール圧の反動により陽極電極が大きくなります。 そのため、一般的なカソード電極は巻いただけます。 のアノード電極シート、一部の企業だけをロールまで、一...
    続きを読む
  • 二次電池の電極膜の適用方法
    Jun 08 , 2020
    電池電極の移動ロール塗装機 塗布ローラーの回転駆動スラリーを調整するスクレーパークの量を調整するスラリー、スラリー状の基板、銅箔、アルミ箔等) 回転によるコーティングローラーによる処理の要件を制御する膜厚の重量ます。 同時に、溶媒、電池スラリーを取り除く乾燥、加熱オーブンでの固体電池の正極、負極材は接着の基盤材料です。 の転写塗装ありません厳しい粘性要件電池のスラリー調整が容易塗装のパラメータ、差し込む。 そのた比較的貧しい塗布精度を保障することはできませんで一貫した電池を印加することができます。 の電池用スラリー空間にローラーは、一部の物件のスラリー. この公開買付-SY300J間欠 ラボコーター はロール 移動塗装機 でき、連続的および間欠塗工に適した様々な基板表面塗装を行っています。 電池電極押出コーティング機 の給餌システムに転送し電池用スラリーのスクリューポンプ、その押出機、バッ...
    続きを読む
  • では、より良い三元系リチウムイオン電池またはその他?
    Jul 03 , 2020
    多くの種類があり 正極材料 リチウムイオン電池です。 別の違いに正極材料 彼らは大きく分けて LiNiMnCoO2NMC(NCM正極材料 , LiNiCoAlO2NCA正極材料 , LiFePO4LFP正極 , LiCoO2LCO陰極 , LiMn2O4LMO陰極 や Li4Ti5O12LTO 材料 . 三元系リチウム電池とはリチウム電池を使用する三 遷移金属酸化物の酸化ニッケル、コバルトおよびマンガンとして、カソード電極 素材です。 その長所を兼ね備えたリチウムコバルト酸化物、リチウムニッケル 酸リチウムマンガン酸、そのパフォーマンスに優れます。 公開買付けには、高性能-高容量正極材料 グローバルリチウム電池の製造-研究する。 複素材であるリチウム電池 正極材料の優れた総合性能 の変更 モル比の材料を一定の範囲内で、 対応する添加剤 電池のバインダー , 導電性添加剤 , 現在の 集電箔...
    続きを読む
  • リチウムイオン電池のグラフェンの負極材料
    Jul 10 , 2020
    グラフェンの負極材料 の交換 黒鉛材料 として新しい 正極材料 リチウムイオン電池による独自の二次元 構造を有し、優れた電子輸送能力の超大の特定の面積です。 リチウム蓄電メカニズムグラフェンの負極材はsim ilarる その他の炭素質材料です。 充電中は、リチウムイオンからの大通りに面しており、 カソード電極 形Li2C6を通じて埋め込む電解液コージェネレーション 材料の層です。 放電させるとき、リチウムイオンの出し、陰極を印加することができます。 の特例により、二次元グラフェンの構造材料 場合は、ラメラ間隔がより大き0.7nmの両方の側面をグラフェンを保存できリチウムイオンである。 同時に、グラフェンは折ともできる店 リチウム、理論的にその能力がこのグラファイト、以744mAh/gとなった。 また、サイズのグラフェンは、主にマイクロ-ナノで小型のバルクの黒鉛のイオン拡散経路のLiイオンに...
    続きを読む
  • 6 リチウムイオン バッテリーの種類 - リチウム鉄 リン酸塩(LFP)
    Sep 07 , 2020
    リチウム リン酸塩 優れた電気化学的性能と低い 抵抗 これ ナノスケール によって達成されますリン酸カソード 材料。 主な利点は、定格電流が高く、サイクルが長いことです 寿命; 優れた熱安定性、強化されたセキュリティ、および 乱用に対する耐性。 もし 長期間高電圧に保たれると、リン酸リチウムは完全充電条件に対してより耐性があり、ストレスが少なくなります より その他のリチウムイオン システム 欠点は、公称電圧が 3.2V と低いことです。バッテリーは比エネルギーを より低くします コバルトをドープした リチウムイオン バッテリー。 リン酸リチウムはより高い 自己放電 より その他 リチウムイオン バッテリーは、経年劣化を引き起こし、イコライゼーションの問題を引き起こす可能性がありますが、 これは、 高品質 を使用することで相殺できます。バッテリーまたは高度なバッテリー管理システム。どちらも...
    続きを読む
  • ニッケルリッチカソード材料 NCM 材料
    Oct 23 , 2020
    現在、高容量のエネルギー密度と電力密度の達成が拡大の焦点となっています リチウム電池 大規模エネルギー貯蔵への応用 システム したがって、電極製造プロセスでは、 バッテリー の大量エネルギー密度の要件を満たすために、高負荷レベルと過酷なカレンダリングプロセスが必要です。 しかし 電極製造プロセスは、電極上の電子とイオンの輸送を調整するために高度に最適化されており、局所的なイオンの多様性と電子伝導性は、最終的に深刻な反応の不均一性をもたらし、 バッテリーの安定性に影響を与えます。特定の製造条件と動作環境では、この不均一な反応挙動は 激しくなります。 さらに、深刻な 微細構造 圧延プロセスでの表面粒子の崩壊は、長期サイクルプロセスで局所的な偏差を引き起こす可能性があります。 同時に、ニッケルベース LiNixCoyMnzO2 ( NCM )、高エネルギーの候補材料として カソード電極 は、二次...
    続きを読む
  • リチウム電池カソード材料の準備
    Dec 09 , 2020
    最初は確認して焼くことです 電池素材 。 一般的に、 電池導電剤 120で焼く必要があります ℃ 8時間 時間 ザ・ PVDF パウダー すべき 80で焼く ℃ 8時間 時間 ザ・ カソード活物質 (LFP、NCMなど) 着信の状態とプロセスによって異なります材料 かどうか 焼いて 乾燥させる必要があります。 乾燥後、 (ウェット プロセス) 混合 PVDF パウダー そして NMP 溶媒 バインダーを作るために (接着剤) 電極用 PVDF の品質バインダー (接着剤) バッテリー の内部抵抗と電気的性能にとって非常に重要です。バインダーの混合に影響を与える要因には、温度と攪拌速度が含まれます。バインダーの温度が高くなると黄変し、 接着に影響します。 混合速度が速すぎて、バインダーが壊れやすい 比速度は分散液のサイズによって異なります プレート 一般に、分散プレートの直線速度は 10-1...
    続きを読む
  • バッテリーアノード材料の準備
    Dec 16 , 2020
    リチウム電池のアノードは、 アノード活物質 、 導電剤 、 電池 バインダー そして 分散剤 。 従来型 アノード電極システムは水混合プロセスです ( 溶媒は脱イオン水です)ので、入ってくる材料は 乾燥を必要としません。 これ プロセス 必要なもの: 脱イオン水の導電率 ≤1us / cm。 ワークショップの温度≤40℃、湿度 :≤25%RH。 材料を確認した後、接着剤溶液を準備します ( CMC パウダー と水 組成) 最初。 を注ぐ グラファイトパウダー そして 導電剤 ( カーボンブラック 、 CNT 、 グラフェン 、など。 ) に インクルード バッテリースラリーミックス erドライ用 ミキシング 掃除機をかけないことをお勧めします すべきではありません ポンピングされます。 循環水を開始します ( 粒子の押し出し摩擦により深刻な熱が発生します 乾燥中 混合中) 15の低速で 〜...
    続きを読む
  • バッテリー電極コーティングプロセス通知
    Dec 25 , 2020
    ザ・ カソード電極コーティング それは カソードスラリーカソード集電体アルミホイルへの押し出しコーティングまたはスプレーの場合、片面の密度は20〜40 mg / cm2です。 従来のコーティングオーブン温度 4-8 セクション (または 以上)、ベーキング温度の各セクション 95℃ 〜 120℃ 実際の調整の必要性に応じて、ベーキングクラックの横方向のクラックと溶剤現象を回避するために、転写コーティングローラーの速度比は1.1-1.2であり、ギャップ位置は すべき 20-30um で薄くなります (回避 トレーリングによる極耳の過度の圧縮、およびバッテリーサイクルでのリチウム抽出)、およびコーティング水 すべき ≤2000-3000ppm (特定の 材料と プロセスに応じて) カソード電極コーティングワークショップの温度は≤30℃、湿度は ≤25%です。 アノード電極コーティング それは ...
    続きを読む
  • ポーチセルケース用アルミラミネートフィルム
    Sep 02 , 2021
    リチウム電池の梱包方法は、使用するシェルの材質によって異なります.一般的に、リチウムポーチバッテリーのみが使用されます アルミラミネートフィルム とヒートシール.金属缶の電池は通常、レーザー溶接で密閉されています. アルミラミネートフィルム 通常、ナイロン層、Al層、PP層の3層があります. ナイロン層は、アルミニウムラミネートフィルムの外観を確保し、シェルへの損傷を減らし、リチウムイオンバッテリーに製造する前にアルミニウムラミネートフィルムが変形しないようにし、空気、特に酸素がバッテリーに浸透するのを防ぎ、内部環境を維持しますバッテリーセルの. リチウムイオン電池は通常水を恐れます.したがって、電極シートの含水量はPPMレベルである必要があります. Al層は、水の浸入を防ぐ機能を持つ金属Alの層で構成されており、フィルム圧縮成形時にアルミニウムラミネートに可塑性を提供し、セルの内部環境を...
    続きを読む
  • ナトリウムイオン電池とリチウムイオン電池の違い
    Dec 24 , 2021
    の理論的基礎とバッテリー構造 ナトリウムイオン電池(Naイオン電池) とリチウムイオン電池は非常に似ています.液体ナトリウムイオン電池(固体リチウムイオン電池なども検討中)は、正極、負極、 集電装置 、電解質、および バッテリーセパレーター. その中で、電解質とセパレーターは基本的にリチウムイオン電池システムに従います.集電体のアノードとカソードの両方にアルミニウム箔を使用できますが、リチウムイオン電池のアノードには銅箔が必要です(ナトリウムイオンはアノードでアルミニウムイオンと反応しないため).これにより、電流のコストも削減されます.コレクタ. ナトリウムイオンとリチウムイオンの特性の違いにより、ナトリウムイオンのカソードとアノードの材料は、ナトリウムイオン電池技術の中核でもあるナトリウムイオンの移動に適した材料を選択する必要があります.現在、3つの主要なものがあります ナトリウムイオン...
    続きを読む
  • ナトリウムイオン電池の陰極材料
    Dec 27 , 2021
    (1)層状金属酸化物 層状金属酸化物は、その製造方法が単純で比容量が大きいため、研究者に好まれています.リチウム電池と同様に、層状酸化物陰極材料もナトリウムイオン電池での商用利用に有望な陰極材料です. (2)プルシアンブルー プルシアンブルーのフレーム構造により、ナトリウムイオンをすばやく埋め込み、放出することができ、優れた構造安定性とレート性能を備えています.プルシアンブルーの素材は優れた用途の見通しを示していますが、その商用用途にはまだいくつかの問題があります.主な理由は、結晶水と空孔の存在が材料の特性に影響を与えることです.結晶水はナトリウムイオンの拡散を妨げ、水の分解により電池の電気化学的性能がさらに低下し、速度性能が低下します.空孔は材料の電子伝導性の低下につながり、材料の結晶フレームは空孔の存在によりサイクルプロセスで崩壊しやすくなります. この規模の生産は、現在でも大きな困難...
    続きを読む
  • リチウムイオン電池のサイクル性能に影響を与える要因は何ですか?
    Aug 24 , 2022
    材料 材料の選択は、リチウムイオン電池の性能に影響を与える最初の要因です。 サイクル性能の低いバッテリー 材料 を選択する と、プロセスが合理的で生産が完璧であっても、セルのサイクルは保証されません。また、材料が良ければ、その後の製造工程で多少の問題があっても、サイクル性能はそれほど悪くないかもしれません。 材料の観点からは、バッテリーのサイクル性能はカソードとアノードに依存し、電解質と一致するとサイクル性能が低下します。物質循環性能が良くない場合。一方では、サイクル中に結晶構造が急速に変化し、リチウム イオンの放出と受け取りが完了できない場合があります。一方では、活物質と対応する電解質が緻密で均一なSEI膜を生成できなくなり、活物質と電解質の間の副反応が時期尚早になり、電解質が急速に消費され、結果としてサイクリングパフォーマンス。 したがって、セルの設計において、正極または負極のどちらか...
    続きを読む
先頭ページ 1 2 3 最後のページ
[  の合計  3  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社