-
(1)層状金属酸化物 層状金属酸化物は、その製造方法が単純で比容量が大きいため、研究者に好まれています.リチウム電池と同様に、層状酸化物陰極材料もナトリウムイオン電池での商用利用に有望な陰極材料です. (2)プルシアンブルー プルシアンブルーのフレーム構造により、ナトリウムイオンをすばやく埋め込み、放出することができ、優れた構造安定性とレート性能を備えています.プルシアンブルーの素材は優れた用途の見通しを示していますが、その商用用途にはまだいくつかの問題があります.主な理由は、結晶水と空孔の存在が材料の特性に影響を与えることです.結晶水はナトリウムイオンの拡散を妨げ、水の分解により電池の電気化学的性能がさらに低下し、速度性能が低下します.空孔は材料の電子伝導性の低下につながり、材料の結晶フレームは空孔の存在によりサイクルプロセスで崩壊しやすくなります. この規模の生産は、現在でも大きな困難...
続きを読む
-
最近、 化学工学部の張強教授のチーム 清華大学がバルク/表面界面に関する研究結果を発表 リチウムに富むマンガン系正極材料の構造設計 全固体金属リチウム電池。彼らは現場のバルク/表面を提案しました。 界面構造制御戦略を確立し、高速かつ安定なLi+/e-経路を構築し、リチウムリッチの実用化を推進 全固体リチウム電池のマンガンベースの正極材料。 電池は 現代のエネルギー分野で重要な役割を果たし、さまざまな分野で大きな成功を収めています。 ポータブル電子機器、電気自動車、グリッドスケールのエネルギー貯蔵 アプリケーション。ただし、バッテリーのエネルギー密度を向上させると同時に、 バッテリーの安全性が鍵です。需要の急速な成長に伴い、 電池のエネルギー密度を向上させる、従来のリチウムイオン電池 従来の正極材料と有機物に依存する技術 電解質は長期サイクルで技術的なボトルネックに直面しています 安定性、広...
続きを読む