-
リチウムイオン電池の場合、 正極材 使用できるものは、大きな可逆容量、高い可能性と安定性、無毒で低生産コストの特性を満たす必要があります。現在、リン酸鉄リチウムは、リチウムイオン電池の最も一般的な正極材料です。ただし、lifepo4は導電率が低く、リチウムイオン移動度が低くなっています。 lifepo4材料をグラフェンと組み合わせると、その導電率と乗数の性能を理論的に向上させることができます。 グラフェン材料の特殊性のため、カソードグラフェン材料に関する研究は比較的ほとんど行われていません。研究によると、グラフェンを熱水法によってlifepo4の表面に直接コーティングした場合、複合材料の乗数性能はあまり良くありません。その理由は、グラフェン材料構造の積層または破壊である可能性があります。 lifepo4をグラフェンで包むことによって形成された材料は、lifepo4材料の導電率を向上させるこ...
続きを読む
-
グラフェン 酸化物 六角形のハニカム格子を備えた炭素原子で構成される2次元の平面ナノ材料です。c-c結合長は0.141 nm、理論密度は約0.77 mg / m2、厚さは炭素原子の直径程度です。炭素原子はsp2の方法でハイブリダイゼーションに参加し、電子は層間をスムーズに伝導できるため、グラフェンは電気を非常によく伝導します。それは、最小の抵抗率が知られている材料であり、これがグラフェンが電池の有望な将来をもたらす理由の1つです。 バッテリーグラフェン材料 優れた熱伝導率を持ち、単層の理論的な室温熱伝導率は最大3,000〜5,000w /(m * k)です。この特性は、バッテリー動作中の熱放散の研究に使用できます。優れた機械的特性を持ち、靭性と強度に優れた材料であり、フレキシブル電極材料の開発と研究に使用できます。加えて、グラフェンの高い比表面積と高い透過率も大きな研究価値があります。 厦...
続きを読む
-
リチウムイオン電池の主要なコンポーネントには、カソード、アノード、電解質、膜などが含まれます。リチウムイオンエネルギーの貯蔵と放出は、電極材料のレドックス反応の形で実現され、カソード活性材料は、リチウムイオン電池。 リチウム電池の父であるgoodenough教授は、リチウム電池正極材料の研究に多大な貢献をしてきました。 1980年、イギリスのオックスフォード大学で働いていたとき、彼は コバルト酸リチウム(lco ) リチウムカソードとして使用できます。 1981年に、彼はの実現可能性に言及しました ニッケル酸リチウム (linio2、別名lno)lco特許のカソード材料として。 1983年に、彼は使用する彼の最初の試みをしました マンガン酸リチウム(lmo) リチウムイオン電池の正極材料として。 1997年に、彼は開発しました リン酸鉄リチウム (lifepo4、またはlfp)、これはかん...
続きを読む
-
前書き: ポリフッ化ビニリデンバインダー(PVDF) 現在、リチウムイオン電池業界で最も一般的に使用されているオイルバインダーです。それは非極性鎖ポリマーバインダーです。強力な耐酸化性、優れた熱安定性、容易な分散が特徴です。 n-メチルピロリドン(nmp) 溶剤として必要です。この溶媒は揮発温度が高く、特定の環境汚染があり、高価です。 明らかな欠陥は次のとおりです。 1)ヤング率は比較的高く、1〜4 gpaで、pの柔軟性 oleピースは十分ではありません。 2)pvdfが水を吸収すると、分子量d 増加し、粘度が低くなるため、環境の湿度要件は比較的高くなります。 3)イオン絶縁および電子絶縁のために、電解液にはある程度の膨潤があります。高温でリチウム金属やlixc6と発熱反応し、バッテリーの安全性に悪影響を及ぼします。 結合メカニズム: 従来のpvdf、主な作用メカニズムはファンデルワールス...
続きを読む
-
リチウムに富むマンガンベース(xli [li1 / 3-mn2 / 3] o2;(1–x)limo2、mは遷移金属0≤x≤1、構造はlicoo2に類似)は高放電特定の容量。これは、現在使用されている正極材料の実際の容量の約2倍であるため、リチウム電池材料として広く研究されています。さらに、この材料には大量のmn元素が含まれているため、licoo2および三元材料li [ni1 / 3mn1 / 3co1 / 3] o2よりも環境に安全で安価です。したがって、xli [li1 / 3-mn2 / 3] o2; (1–x)limo2素材は、次世代の理想的な素材として多くの学者によって検討されています リチウムイオン電池正極材 。 現在、共沈法は主にリチウムに富むマンガンベースの材料を調製するために使用されており、一部の研究者はゾルゲル法、固相法、燃焼法、水熱法およびその他のプロセスを使用して調製...
続きを読む
-
コアとして 燃料を交換した製品-動力車、新エネルギー車は より多くのユーザーによって受け入れられました。同様に、newのコンポーネントの1つとして エネルギー車、パワーバッテリーはますます有望な市場を持っています。として リチウムイオン電池およびスーパーキャパシター、tobの分野のハイテク企業 常に燃料電池の開発に取り組んできました。 新しいエネルギーを奪う の完全なセットを提供できます 燃料電池ソリューション 、私たちは提供することができます 燃料電池 材料 、 機械を作る燃料電池 そして 技術サポート 。私達はまた設計できます あなた自身の 燃料電池ラボ研究ライン 、 燃料電池パイロットラインと生産ライン あなたの要求に応じて工場で。 比較した 従来のパワーセルでは、燃料電池は直接電気に変換されます 電気化学反応を通じて。その結果、その全体的な発電 効率は通常のパワーバッテリーよりもは...
続きを読む
-
多くの種類があり 正極材料 リチウムイオン電池です。 別の違いに正極材料 彼らは大きく分けて LiNiMnCoO2NMC(NCM正極材料 , LiNiCoAlO2NCA正極材料 , LiFePO4LFP正極 , LiCoO2LCO陰極 , LiMn2O4LMO陰極 や Li4Ti5O12LTO 材料 . 三元系リチウム電池とはリチウム電池を使用する三 遷移金属酸化物の酸化ニッケル、コバルトおよびマンガンとして、カソード電極 素材です。 その長所を兼ね備えたリチウムコバルト酸化物、リチウムニッケル 酸リチウムマンガン酸、そのパフォーマンスに優れます。 公開買付けには、高性能-高容量正極材料 グローバルリチウム電池の製造-研究する。 複素材であるリチウム電池 正極材料の優れた総合性能 の変更 モル比の材料を一定の範囲内で、 対応する添加剤 電池のバインダー , 導電性添加剤 , 現在の 集電箔...
続きを読む
-
グラフェンの負極材料 の交換 黒鉛材料 として新しい 正極材料 リチウムイオン電池による独自の二次元 構造を有し、優れた電子輸送能力の超大の特定の面積です。 リチウム蓄電メカニズムグラフェンの負極材はsim ilarる その他の炭素質材料です。 充電中は、リチウムイオンからの大通りに面しており、 カソード電極 形Li2C6を通じて埋め込む電解液コージェネレーション 材料の層です。 放電させるとき、リチウムイオンの出し、陰極を印加することができます。 の特例により、二次元グラフェンの構造材料 場合は、ラメラ間隔がより大き0.7nmの両方の側面をグラフェンを保存できリチウムイオンである。 同時に、グラフェンは折ともできる店 リチウム、理論的にその能力がこのグラファイト、以744mAh/gとなった。 また、サイズのグラフェンは、主にマイクロ-ナノで小型のバルクの黒鉛のイオン拡散経路のLiイオンに...
続きを読む
-
PEDOT材料導電性高分子
Jul 17 , 2020
最も広く使用されている電池はリチウム電池、リチウム電池また、いくつかの問題ではありません。 の問題であること リチウム電池 陰極 生産過剰酸素と反応し 電解質 の原因とな薄膜を形成し表面の 電池正極 低減、エネルギー移動およびこのように全体の性能の電池です。 この問題を解決するには、陰極でリチウムイオン電池は、コートと特殊コーティング材料を削減する新しい結論を得た。 しかし、この効率を低下させ、電池による経年劣化が生じる可能性が高温連続電圧を実現することで、電池の寿命です。 にした新しい研究では、研究者が開発した新しいコーティング材料 導電性高分子材料PEDOT えくリチウムイオン電池より安全で長持ち。 この PEDOT材料導電性高分子 完全に保護し、陰極から反応、電解液. の PEDOT材料 使用ガスを確保するには、コーティングが施される各粒子の陰極を形成し強固な保護層します。 、従来の...
続きを読む
-
コバルト酸リチウム電池 成 コバルト酸化物系燃料電池 や 黒鉛質カーボン負極 . の LCO陰極 は層状構造の中で放電、リチウムイオンから負極を陰極に流れ反転時の電池は充電を可能にします。 高エネルギーがコバルト酸リチウム電池に人気の選択のための携帯電話、ノートパソコンやデジタルカメラであった。 デメリットのコバルト酸リチウム電池は比較的短寿命、低熱安定性と限定の負荷容量です。 のような他のコバルト混合したリチウムイオン電池、リチウムコバルト酸化物の使用 黒鉛電極 そのサイクル寿命は主に、 固体電解質界面 (SEI). これは主に現れたの緩やかな増粘のSEI膜と陽極のリチウムめっきの中で急速充電や低温での充電を可能にします。 コバルト酸リチウム電池は充放で現在より高くない。 こ18650電池2,400mAhで必要な時に必要な分だけで排出され以下2,400。 強制急速充電による負荷以上240...
続きを読む
-
三次元スピネル構造が形成され、建築、 後に、マンガン酸リチウム電池 を向上するとともに、イオンを流しの 電池電極 削減を実現することができる内部抵抗の改善"という概念に基づいます。 もう一つの利点のスピネルは、高い熱安定性、安全性向上が限定サイクルやカレンダー。 買付け等の新エネルギー 高充実度 l ithiumマンガン粉末 や LiMn2O4の正極材料 のためのlitium 電池正極材料 . お客様のすべてのリチウムイオン電池材料、機器のバッテリーの製造-研究する。 を形成する三次元結晶を骨格の陰極の後に、マンガン酸リチウムバッテリーです。 のスピネル構造は通常のダイヤモンド形状の接続の格子は通常表示後、電池を形成する。 スピネル低抵抗を下回ったものの固有のエネルギーをよりコバルト酸リチウム 低内部抵抗で高速充電-高流動排出します。 の18650細胞、後に、マンガン酸リチウム電池の放電す...
続きを読む
-
最も成功したリチウムイオンシステムの1つは、ニッケルマンガンコバルト(nmc)。お気に入りマンガン酸リチウム、システムは、エネルギーまたはパワーバッテリーとして使用するためにカスタマイズできます。たとえば、nmc中程度の負荷がかかる18650バッテリーの容量は約2,800mAで、4aから5aの放電電流を提供できます。特定の電力に最適化された同じタイプのnmcは、容量が2,000mAhですが、連続放電電流は20aです。シリコンアノードは4000mahを超えますが、負荷容量が減少し、サイクル寿命が短くなります。グラファイトに添加されたシリコンには欠陥があり、充放電に伴って負極が膨張・収縮するため、機械的ストレスが大きい電池の構造が不安定になります。nmcの秘密は、ニッケルとマンガンの組み合わせにあります。ニッケルは比エネルギーが高いことで知られていますが、安定性は劣ります。マンガンスピネル構造...
続きを読む
-
リチウム リン酸塩 優れた電気化学的性能と低い 抵抗 これ ナノスケール によって達成されますリン酸カソード 材料。 主な利点は、定格電流が高く、サイクルが長いことです 寿命; 優れた熱安定性、強化されたセキュリティ、および 乱用に対する耐性。 もし 長期間高電圧に保たれると、リン酸リチウムは完全充電条件に対してより耐性があり、ストレスが少なくなります より その他のリチウムイオン システム 欠点は、公称電圧が 3.2V と低いことです。バッテリーは比エネルギーを より低くします コバルトをドープした リチウムイオン バッテリー。 リン酸リチウムはより高い 自己放電 より その他 リチウムイオン バッテリーは、経年劣化を引き起こし、イコライゼーションの問題を引き起こす可能性がありますが、 これは、 高品質 を使用することで相殺できます。バッテリーまたは高度なバッテリー管理システム。どちらも...
続きを読む
-
NCA カソード材料 バッテリーは、比エネルギーが高く、比電力が高く、耐用年数が長いです。 NMC 陰極 バッテリー。 しかし、の欠点 NCA 陰極 バッテリーは安全性が低く、コストが高い NCA はリチウムニッケルのさらなる開発です 酸化物。 アルミニウムを追加すると、バッテリーの化学的安定性が向
続きを読む
-
現在、高容量のエネルギー密度と電力密度の達成が拡大の焦点となっています リチウム電池 大規模エネルギー貯蔵への応用 システム したがって、電極製造プロセスでは、 バッテリー の大量エネルギー密度の要件を満たすために、高負荷レベルと過酷なカレンダリングプロセスが必要です。 しかし 電極製造プロセスは、電極上の電子とイオンの輸送を調整するために高度に最適化されており、局所的なイオンの多様性と電子伝導性は、最終的に深刻な反応の不均一性をもたらし、 バッテリーの安定性に影響を与えます。特定の製造条件と動作環境では、この不均一な反応挙動は 激しくなります。 さらに、深刻な 微細構造 圧延プロセスでの表面粒子の崩壊は、長期サイクルプロセスで局所的な偏差を引き起こす可能性があります。 同時に、ニッケルベース LiNixCoyMnzO2 ( NCM )、高エネルギーの候補材料として カソード電極 は、二次...
続きを読む
-
最初は確認して焼くことです 電池素材 。 一般的に、 電池導電剤 120で焼く必要があります ℃ 8時間 時間 ザ・ PVDF パウダー すべき 80で焼く ℃ 8時間 時間 ザ・ カソード活物質 (LFP、NCMなど) 着信の状態とプロセスによって異なります材料 かどうか 焼いて 乾燥させる必要があります。 乾燥後、 (ウェット プロセス) 混合 PVDF パウダー そして NMP 溶媒 バインダーを作るために (接着剤) 電極用 PVDF の品質バインダー (接着剤) バッテリー の内部抵抗と電気的性能にとって非常に重要です。バインダーの混合に影響を与える要因には、温度と攪拌速度が含まれます。バインダーの温度が高くなると黄変し、 接着に影響します。 混合速度が速すぎて、バインダーが壊れやすい 比速度は分散液のサイズによって異なります プレート 一般に、分散プレートの直線速度は 10-1...
続きを読む
-
バッテリーアノード材料の準備
Dec 16 , 2020
リチウム電池のアノードは、 アノード活物質 、 導電剤 、 電池 バインダー そして 分散剤 。 従来型 アノード電極システムは水混合プロセスです ( 溶媒は脱イオン水です)ので、入ってくる材料は 乾燥を必要としません。 これ プロセス 必要なもの: 脱イオン水の導電率 ≤1us / cm。 ワークショップの温度≤40℃、湿度 :≤25%RH。 材料を確認した後、接着剤溶液を準備します ( CMC パウダー と水 組成) 最初。 を注ぐ グラファイトパウダー そして 導電剤 ( カーボンブラック 、 CNT 、 グラフェン 、など。 ) に インクルード バッテリースラリーミックス erドライ用 ミキシング 掃除機をかけないことをお勧めします すべきではありません ポンピングされます。 循環水を開始します ( 粒子の押し出し摩擦により深刻な熱が発生します 乾燥中 混合中) 15の低速で 〜...
続きを読む
-
ザ・ カソード電極コーティング それは カソードスラリーカソード集電体アルミホイルへの押し出しコーティングまたはスプレーの場合、片面の密度は20〜40 mg / cm2です。 従来のコーティングオーブン温度 4-8 セクション (または 以上)、ベーキング温度の各セクション 95℃ 〜 120℃ 実際の調整の必要性に応じて、ベーキングクラックの横方向のクラックと溶剤現象を回避するために、転写コーティングローラーの速度比は1.1-1.2であり、ギャップ位置は すべき 20-30um で薄くなります (回避 トレーリングによる極耳の過度の圧縮、およびバッテリーサイクルでのリチウム抽出)、およびコーティング水 すべき ≤2000-3000ppm (特定の 材料と プロセスに応じて) カソード電極コーティングワークショップの温度は≤30℃、湿度は ≤25%です。 アノード電極コーティング それは ...
続きを読む
-
リチウムイオンの構造電池セル、 電池のタブセルの陰極電極および陽極電極からなる金属導体であり、完全な電池タブは主に高温絶縁性接着剤と金属導電性とからなる。 高温 絶縁性接着剤は、パウチセルのための電池タブの絶縁部分であり、その役割は、金属ストリップとアルミラミネートフィルムとの間の短絡を防止することである。電池はカプセル化されており、アルミラミネートフィルムをホットメルトと一緒に加熱してシールすることによる漏れを防ぐ。 カプセル化。 電池タブの理論的パラメータ (1) 安全伝送 の価値 ニッケルタブ11-13A / MM2、ニッケルの導電率は140,000s、融点であり、融点は1200℃~1400℃である。 タブ厚/ / MM タブ幅/ MM オーバーカレント キャパシティ/ A 0.1 3 3.5 0.1 4 4.5 0.1 5 5.5 0.1 6 6.5 (2) 安全伝送 銅タブの値は...
続きを読む
-
リチウム電池の梱包方法は、使用するシェルの材質によって異なります.一般的に、リチウムポーチバッテリーのみが使用されます アルミラミネートフィルム とヒートシール.金属缶の電池は通常、レーザー溶接で密閉されています. アルミラミネートフィルム 通常、ナイロン層、Al層、PP層の3層があります. ナイロン層は、アルミニウムラミネートフィルムの外観を確保し、シェルへの損傷を減らし、リチウムイオンバッテリーに製造する前にアルミニウムラミネートフィルムが変形しないようにし、空気、特に酸素がバッテリーに浸透するのを防ぎ、内部環境を維持しますバッテリーセルの. リチウムイオン電池は通常水を恐れます.したがって、電極シートの含水量はPPMレベルである必要があります. Al層は、水の浸入を防ぐ機能を持つ金属Alの層で構成されており、フィルム圧縮成形時にアルミニウムラミネートに可塑性を提供し、セルの内部環境を...
続きを読む