へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution
検索
  • 硫化物系全固体リチウム電池用負極の最近の進歩
    Oct 08 , 2023
    硫化物系全固体リチウム電池負極の最近の進歩 —— パート 1リチウム金属負極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 抽象的な 全固体リチウム電池 (ASSLB) は、現在の液体リチウム電池よりも高いエネルギー密度と安全性を示し、次世代エネルギー貯蔵デバイスの主な研究方向となっています。硫化物固体電解質(SSE)は、他の固体電解質と比較して、超高イオン伝導度、低硬度、加工容易、界面接触良好などの特徴を有しており、全固体電解質を実現するための最も有望な手段の一つです。 -状態のバッテリー。ただし、アノードと SSE の間には、界面副反応、剛性接触不良、リチウムデンドライトなど、用途を制限する界面の問題がいくつかあります。この研究では...
    続きを読む
  • 硫化物系全固体リチウム電池用負極に関する最近の進歩 — その他の負極
    Oct 25 , 2023
    前回の記事からの続きです 硫化物系全固体リチウム電池負極の最近の進歩 —— パート 2 その他の陽極 著者:  JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 リチウム合金負極 界面副反応が激しいため、純粋なリチウムを短期的に硫化物固体電解質に直接使用することは困難であるため、リチウム合金材料はより魅力的な選択肢となります。金属リチウムアノードと比較して、リチウム合金アノードは界面の濡れ性を改善し、界面副反応の発生を抑制し、固体電解質界面の化学的および機械的安定性を高め、リチウムデンドライトの成長によって引き起こされる短絡を回避できます。同時に、液体リチウムイオン電池と比較して、合金負極は全固体電池においてより高いエネルギー密度とより優...
    続きを読む
  • P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池正極材料の電気化学的活性
    Nov 08 , 2023
    P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池正極材料の電気化学的活性 著者: ZHANG Xiaojun 1、LI Jiale 1,2、QIU Wujie 2,3、YANG Miaosen 1、LIU Jianjun 2,3,4 1. バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2. 高性能セラミックスおよび超微細微細構造の国家重点研究所、中国科学院、上海陶磁器研究所、上海200050、中国 3. 中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4. 中国科学院大学杭州高等研究所化学材料科学部、杭州310024、中国 抽象的な ナトリウムイオン電池は、低コストで原材料が広く流通しているという利点があるため、リチウムイオン電池の正極材料の最良の代替材料と考えられています。層状構造を...
    続きを読む
  • リチウム硫黄電池におけるホウ素系材料の最近の進歩
    Nov 22 , 2023
    リチウム硫黄電池におけるホウ素系材料の最近の進歩 著者:李高蘭、李紅陽、曾海波 MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Nano Optoelectronic Materials, Institute of Materials Science and Engineering, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 抽象的な リチウム硫黄 (Li-S) 電池は、その高エネルギー密度と低コストにより、次世代の電気化学エネルギー貯蔵技術の開発において重要な役割を果たします。しかし、その実用化は、変換反応の反応速度の...
    続きを読む
  • NCM、LFP、LFMPの性能比較
    Dec 18 , 2023
    1. リン酸鉄マンガンリチウムとは何ですか? リン酸鉄マンガンリチウムは、リン酸鉄リチウムに一定量のマンガン元素をドープして形成された新しい正極材料です。マンガン元素と鉄元素のイオン半径と一部の化学的性質が似ているため、リン酸鉄マンガンリチウムとリン酸鉄リチウムは構造が似ており、どちらもオリビン構造を持っています。リン酸マンガン鉄リチウムは、エネルギー密度の観点からはリン酸鉄リチウムよりも優れており、「リン酸鉄リチウムの改良版」とされています。 リン酸鉄マンガンリチウムは、リン酸鉄リチウムのエネルギー密度のボトルネックを突破することができます。現在、リン酸鉄リチウムの最大エネルギー密度は161~164Wh/kg程度で安定している。より高いエネルギー密度を有するリン酸塩ベースの材料であるリン酸鉄マンガンリチウムの応用は、リン酸鉄リチウムのエネルギー密度のボトルネックを打破するのに役立ち、工業...
    続きを読む
  • 全固体薄膜リチウム電池用アモルファスLiSiON薄膜電解質
    Jan 04 , 2024
    著者: XIA Qiuying、SUN Shuo、ZAN Feng、XU Jing、XIA Hui 南京科学技術大学材料科学工学院、南京210094、中国 抽象的な 全固体薄膜リチウム電池(TFLB)は、マイクロエレクトロニクスデバイスにとって理想的な電源とみなされています。しかし、アモルファス固体電解質のイオン伝導率は比較的低いため、TFLB の電気化学的性能の向上には限界があります。この研究では、TFLB 用の固体電解質として、マグネトロン スパッタリングによってアモルファス酸窒化リチウム シリコン (LiSiON) 薄膜を作製します。最適化された堆積条件により、LiSiON 薄膜は室温で 6.3×10-6 S・cm-1 の高いイオン伝導率と 5 V を超える広い電圧ウィンドウを示し、TFLB に適した薄膜電解質となります。MoO3/LiSiON/Li TFLB は、大きな比容量 (5...
    続きを読む
  • 硫化物固体電池の正極および負極の作製および組立方法
    Feb 01 , 2024
    近年、Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al、P)、Li6PS5X(X)などの硫化物固体電解質の開発が急速に進んでいます。 =Cl、Br、I)。特に、Li10GeP2S12(LGPS)に代表されるチオLISICON構造硫化物は、室温で液体電解質を超える12mS/cmという極めて高いリチウムイオン伝導度を示し、固体電解質の固有伝導度が不十分であるという欠点を部分的に解決しました。 図1(a)は2.2cm×2.2cmのLi1.5Al0.5Ge1.5(PO4)3を用いた全固体リチウム電池を示しています。これは、ガラスセラミック固体電解質シート、LiFePO4 正極材料、PEO ベースのポリマー修飾層、および金属リチウム負極から組み立てられています。室温で正常に放電し、LEDライトを点灯できます。そのコアコンポーネントの...
    続きを読む
  • 角形セルを分解するにはどうすればよいですか?
    Feb 22 , 2024
    円筒形セル、パウチセル、角形セルの 3 つのシェルタイプの中で、角形セルが最も高い汎用性と市場シェアを持っています。しかし、電池を分解して内部プロセス設計を検討する場合、ショートさせず、内部構造に影響を与えず、安全性を確保する必要があります。どのように分解すればよいでしょうか? 1。目的 安全、正確かつ効果的な分解仕様を確保するために、単一角柱セル サンプルの分解をガイドします。 2. 分解方法と要件 2.1 環境の解体。 バッテリーセルの分解は、次の条件下で実行する必要があります。 温度:25℃±5℃ 相対湿度: ≤30%RH 気圧:86KPa~106Kpa 2.2 解体現場の要件 a.解体現場には、消火設備、警報設備、緊急設備などの安全対策を講じる必要があります。 b. 解体現場は強化され、漏れのない環境保護設備が備えられている必要があります。 c. 解体現場は乾燥した状態に保つ必要が...
    続きを読む
  • 電池電極のカレンダー加工工程
    Mar 06 , 2024
    カレンダー加工とは: バッテリー電極のカレンダー加工は、リチウムイオンバッテリーの製造プロセスにおける重要なステップであり、その目的は、設計要件を満たす電極を得ることです。カレンダー加工は必要な工程です。電極を塗布し乾燥させた後、活物質と集電箔との間の剥離強度は低い。このとき、活物質と箔の結合強度を高め、電解液浸漬時や電池使用時の剥離を防ぐためにカレンダー加工が必要です。 カレンダーの目的: カレンダー加工により、電極の表面は滑らかで平坦に保たれます。電極表面のバリがセパレータを突き破ることによる電池の短絡を防止し、電池のエネルギー密度を向上させます。カレンダー加工プロセスは、電極集電体にコーティングされた電極材料を圧縮することができるため、電極の体積が減少し、電池のエネルギー密度が増加し、リチウム電池のサイクル寿命と安全性能が向上します。   1 回目のカレンダー処理と 2 回目のカレン...
    続きを読む
  • 全固体電池用固体電解質4種類
    Mar 18 , 2024
    全固体電池が業界のトレンドになっているのはなぜですか? 高いセキュリティ: 液体電池の安全性の問題は常に批判されてきました。電解液は高温や強い衝撃を受けると容易に引火します。高電流下では、リチウム樹枝状結晶がセパレータを突き破って短絡を引き起こすこともあります。場合によっては、電解質が高温で副反応を起こしたり、分解したりすることがあります。液体電解質の熱安定性は 100°C までしか維持できませんが、酸化物固体電解質は 800°C に達し、硫化物やハロゲン化物は 400°C に達することもあります。固体酸化物は液体よりも安定しており、固体であるため耐衝撃性は液体よりもはるかに高くなります。したがって、全固体電池は人々の安全に対するニーズを満たすことができます。 高いエネルギー密度: 現在のところ、固体電池は液体電池を超えるエネルギー密度を達成していませんが、理論的には固体電池は非常に高いエ...
    続きを読む
  • リチウムイオン電池の溶接工程は?
    Apr 09 , 2024
    角形セルでも円筒形セルでも、溶接は電池製造における重要なプロセスの 1 つです。リチウム電池の生産ラインでは、溶接プロセスの生産セクションは主にセルの組み立てとパックラインのセクションに集中しています。以下の図を参照してください。 溶接工程の詳細を簡単に説明します 1. 安全ベント溶接 圧力リリーフバルブとしても知られる安全ベントは、バッテリーの上部カバーにある薄肉のバルブ本体です。バッテリーの内圧が規定値を超えると、安全弁が破裂して圧力を開放し、バッテリーの破裂を防ぎます。安全ベントは独創的な構造になっています。通常、レーザー溶接を使用して、特定の形状の 2 枚のアルミニウム金属シートを固定します。電池の内圧が一定値まで上昇すると、アルミシートが設計上の溝位置から破断し、電池のさらなる膨張や爆発を防ぎます。したがって、このプロセスにはレーザー溶接技術に対する非常に厳しい要件が求められます...
    続きを読む
  • リチウムイオン電池の負極材料の分類
    Apr 26 , 2024
    リチウムイオン電池の負極材料の分類 リチウムイオン電池の主要材料の一つである負極材料は、複数の条件を満たす必要があります。 Li の挿入および脱離反応は酸化還元電位が低いため、リチウムイオン電池の高出力電圧を満たすことができます。 Li の挿入および脱離のプロセス中、電極電位はほとんど変化しないため、電池が安定した動作電圧を得るのに有利です。 リチウムイオン電池の高エネルギー密度を満たす大きな可逆容量。 Li 脱離プロセス中の構造安定性が優れているため、バッテリーのサイクル寿命が長くなります。 環境に優しく、製造時やバッテリーの廃棄時に環境汚染や中毒が発生しません。 準備工程が簡単でコストが安い、資源が豊富で入手しやすい、など。 技術の進歩と産業の高度化に伴い、負極材料の種類も増加しており、新しい材料が常に発見されています。 負極材料の種類は、炭素と非炭素に分類できます。炭素には、天然黒鉛...
    続きを読む
先頭ページ 1 ... 3 4 5 最後のページ
[  の合計  5  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社