へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution
検索
  • 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験
    Feb 28 , 2023
    高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験 最初に、Na-H2O-PEG 電解質中の HQ-FeHCF および LQ-FeHCF の電気化学的性能を、3 電極システムを使用してテストしました。図 4(a) は、1 mV s-1 のスキャン レートでの Na-H2O-PEG 電解液中の HQ-FeHCF および LQ-FeHCF のサイクリック ボルタンメトリー曲線を示しています...
    続きを読む
  • 全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質
    Mar 07 , 2023
    全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質 リャン・フェンチン、ウェン・ジャオイン 1. エネルギー変換用材料の CAS キー研究所、上海陶磁器研究所、中国科学院、上海 200050、中国 2. 中国科学院大学材料科学およびオプトエレクトロニクス工学センター、北京 100049、中国 概要 高い柔軟性と加工性を備えた固体高分子電解質 (SPE) により、さまざまな形状の漏れのない固体電池の製造が可能になります。ただし、SPE は通常、イオン伝導率が低く、リチウム金属アノードとの安定性が低いという問題があります。ここでは、ナノサイズの有機金属フレームワーク (MOF) 材料 (UiO-66) をポリ(エチレンオキシド) (PEO) ポリマー電解質のフィラーとして提案します。UiO-66 と PEO 鎖の酸素との配位、および UiO-66 とリチウム塩との相互作用に...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 1
    Mar 31 , 2023
    リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー - パート 1 LI Tingting、ZHANG Yang、CHEN Jiahang、MIN Yulin、WANG Jiulin。リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー。無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 概要 Li-S 電池のカソード材料としての硫化熱分解ポリ(アクリロニトリル) (S@pPAN) 複合材料は、ポリスルフィドの溶解なしに固体-固体変換反応メカニズムを実現します。ただし、その表面と界面の特性は電気化学的性能に大きく影響し、電気化学サイクル中に明らかな体積変化もあります。この研究では、単層カーボンナノチューブ(SWCNT)とカルボキシメチルセルロースナトリウム(CMC)をS@pPANカソードのバインダーとして使用し...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 2
    Apr 13 , 2023
    リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 2 LI Tingting、ZHANG Yang、CHEN Jiahang、MIN Yulin、WANG Jiulin。リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー。無機材料ジャーナル、2022 年、37(2): 182-188 DOI:10.15541/jim20210303 物理的特性のキャラクタリゼーション 材料中の硫黄の既存の形態は、XRDによって調査されました。複合材料では、インターカレートされた硫黄は、分子レベルであってもサイズが 10 ナノメートル未満の小さな粒子であり、非晶質複合材料を形成します。図 1 の 2θ=25.2° の特徴的なピークは、グラファイト化された結晶面 (002) に対応し、複合材料には硫黄の回折ピークはありません。これは、硫黄が S@pPAN で非晶質である...
    続きを読む
  • リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1
    Apr 25 , 2023
    リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China 概要 リチウム硫黄電池は、次世代の費用対効果が高くエネルギー密度の高いエネルギー貯蔵システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、レドックス反応の反応速度の遅さは、深刻な容量低下と速度性能の低下につながります。ここ...
    続きを読む
  • 正極電極スラリーの安定性に及ぼす電池原料の影響
    May 12 , 2023
    電池スラリーは高粘度の固液二相懸濁系であり、この系の安定性を評価するための最初のステップは、その組成と機能特性を研究することです。リチウム産業の多くは、活物質、結着剤、導電剤、溶剤などを一定の割合・順序で混合・分散させた混合物である油性スラリーを使用しています。 正極活物質 正極スラリーの主な電気化学活性成分として、正極活物質は電圧、エネルギー密度、および電池のその他の基本特性を決定し、スラリーシステムの中核となります。活物質の粒度分布、比表面積、pHまたは残留アルカリ値、およびその他の特性は、スラリーの安定性に影響を与えます。 粒度分布: 活物質の粒径と粒径分布は、スラリー製造プロセスにおける重要な要素です。活物質の粒子が小さいほど、連続相の粘度は大きくなり、重力によって引き起こされるスラリーの層化現象は弱くなり、懸濁系の安定性が向上します。しかし、ある程度粒子径を小さくすると、粒子間の...
    続きを読む
  • 電池電極の塗布方法
    May 16 , 2023
    Battery electrode coating is a critical process in the manufacturing of batteries, as it affects the performance, efficiency, and quality of the final product. Electrode coating involves the application of a slurry onto a substrate, such as a metal foil or a current collector, to create a uniform and thin layer of active material, such as lithium cobalt oxide, graphite, or silicon, that can store ...
    続きを読む
  • 電池正極スラリーの調製方法
    Jun 02 , 2023
    電池正極スラリーの調製方法 湿式電極の準備プロセス ダブルプラネタリーミキサーをカソード電極として使用した slurry preparation equipment. First, prepare polyvinylidene fluoride (PVDF) glue. Use an ordinary mixing tank to pour a certain amount of solvent NMP (N-methylpyrrolidone) first, add the binder PVDF powder according to the designed solid content, and stir for 4 to 6 hours to obtain PVDF glue. PVDF glue is a colorless and transparent liquid with...
    続きを読む
  • リチウムイオン電池負極電極スラリーの製造工程
    Jun 19 , 2023
    リチウムイオン電池は、エネルギー密度が高く、サイクル寿命が長く、環境に優しいため、さまざまな分野で広く使用されています。アノード電極スラリーは、リチウムイオン電池の重要なコンポーネントの 1 つであり、電池の性能と安全性に影響を与えます。したがって、アノード電極スラリーの調製プロセスと注意事項を理解することが重要です。 アノード電極スラリーの調製プロセスは、原料の調製、混合、塗布、乾燥の 4 つのステップに分けることができます。 1.原料の準備 アノード電極スラリーの原料には、主に活物質、導電剤、結着剤、溶媒が含まれる。活物質は、グラファイト、シリコン、スズ、およびそれらの合金または複合材料など、バッテリー内のリチウムイオンと電子の主な供給源です。導電剤は、カーボンブラック、グラフェン、カーボンナノチューブなど、スラリーや電極の導電性を向上させるために使用されます。ポリフッ化ビニリデン (...
    続きを読む
  • 電池電極カレンダー加工機の原理と機能
    Jul 12 , 2023
    リチウムイオン電池は、電気自動車、家庭用電化製品、エネルギー貯蔵、航空宇宙などのさまざまな分野で広く使用されています。リチウムイオン電池の性能と品質は、電極の材質とその加工方法によって決まります。電極製造における重要なプロセスの 1 つはカレンダー加工です。これは、集電箔上にコーティングされた電極スラリーを一対のローラーで圧縮することです。カレンダー加工により、電極の密度、導電性、接着力、機械的強度が向上し、厚みと気孔率が減少します。ただし、カレンダー加工には、亀裂、層間剥離、応力の蓄積、容量損失などの欠点もあります。したがって、カレンダー加工パラメーターを最適化し、さまざまな電極の種類や仕様に適した装置を選択することが重要です。 電池電極カレンダー加工機(ローリングプレス機)は、逆方向に回転する2つ以上のローラーで構成され、それらを通過する材料に圧力を加える装置です。カレンダー加工機には...
    続きを読む
  • リチウムイオン円筒型セルの製造プロセス
    Jul 25 , 2023
    円筒型リチウムイオン電池は、エネルギー密度が高くサイクル寿命が長いため、多くの電子機器で広く使用されています。今回は、円筒形リチウムイオン電池の製造工程について詳しく説明します。   1. 原料の準備 製造プロセスの最初のステップは原材料の準備です。リチウムイオン電池の原材料には、正極材、負極材、電解質、セパレータが含まれます。バッテリーの品質を確保するには、これらの材料は高純度でなければなりません。 正極材料は通常、リン酸鉄リチウム (LFP)、マンガン酸ニッケルコバルトリチウム (NCM)、コバルト酸化リチウム (LCO)、マンガン酸化リチウム (LMO)、または酸化ニッケルコバルトアルミニウムリチウム (NCA) でできています。アノード材料は通常グラファイトでできており、電解質はリチウム塩と溶媒で構成されています。セパレータは通常、ポリエチレンまたはポリプロピレンでできて...
    続きを読む
  • Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材
    Aug 09 , 2023
    Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材 孔国強、レン・ミンツェ、周振栄、シア・チー、沈暁芳。Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料[J]。無機材料ジャーナル、2023、38(6): 656-662。 抽象的な ナトリウムイオン電池の正極材料のサイクル安定性と比容量は、その幅広い用途を実現する上で重要な役割を果たします。カソード材料の構造安定性と比容量を最適化するために特定のヘテロ元素を導入する戦略に基づいて、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、0.06) を次の方法で調製しました。簡単な固相反応法とNa0.9Ni0.5Mn0.3Ti0.2O2正極材料のナトリウム貯蔵特性に及ぼすSbドーピング量の影響を研究した。特性評価の結果は、遷移...
    続きを読む
  • Na3Zr2Si2PO12 Naイオン電池用セラミック電解質
    Sep 11 , 2023
    Naイオン電池用Na3Zr2Si2PO12セラミック電解質:噴霧乾燥法による調製とその特性 著者:李文凱、趙寧、BI志傑、郭祥新 Naイオン電池用Na3Zr2Si2PO12セラミック電解質:噴霧乾燥法による調製とその特性 無機材料ジャーナル、2022、37(2): 189-196 DOI: 10.15541/jim20210486 抽象的な 現在、可燃性・爆発性の有機電解質を使用しているNaイオン電池は、より安全で実用化するために高性能なナトリウムイオン固体電解質の開発が急務となっています。Na3Zr2Si2PO12 は、広い電気化学ウィンドウ、高い機械的強度、優れた空気安定性、および高いイオン伝導性を備えた最も有望な固体ナトリウム電解質の 1 つです。しかし、セラミック粒子とバインダーとの不均一な混合により、グリーンボディ内にさらに多くの細孔が生じるため、焼結後に高密度で高導電性のセラミ...
    続きを読む
  • 全固体電池: 整備士の重要な役割
    Sep 27 , 2023
    セルギイ・カルナウスら 全固体電池: 整備士の重要な役割。科学。381、1300 (2023)。 リチウム金属アノードを備えた全固体電池には、エネルギー密度が高く、寿命が長く、動作温度が広く、安全性が向上する可能性があります。研究の大部分は、材料と界面の輸送速度論と電気化学的安定性の改善に焦点を当てていますが、材料力学の調査を必要とする重大な課題もあります。固体-固体界面を備えた電池では、機械的接触、および固体電池の動作中の応力の発生が、これらの界面での安定した電荷移動を維持するための電気化学的安定性と同じくらい重要になります。このレビューでは、通常および長期間のバッテリー サイクルから生じるストレスと歪み、およびストレスを軽減するための関連メカニズムに焦点を当てます。その一部はバッテリーの故障につながります。   背景 全固体電池 (SSB) には、日常の電話や電気自動車に使用...
    続きを読む
  • 硫化物系全固体リチウム電池用負極の最近の進歩
    Oct 08 , 2023
    硫化物系全固体リチウム電池負極の最近の進歩 —— パート 1リチウム金属負極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 抽象的な 全固体リチウム電池 (ASSLB) は、現在の液体リチウム電池よりも高いエネルギー密度と安全性を示し、次世代エネルギー貯蔵デバイスの主な研究方向となっています。硫化物固体電解質(SSE)は、他の固体電解質と比較して、超高イオン伝導度、低硬度、加工容易、界面接触良好などの特徴を有しており、全固体電解質を実現するための最も有望な手段の一つです。 -状態のバッテリー。ただし、アノードと SSE の間には、界面副反応、剛性接触不良、リチウムデンドライトなど、用途を制限する界面の問題がいくつかあります。この研究では...
    続きを読む
  • 硫化物系全固体リチウム電池用負極に関する最近の進歩 — その他の負極
    Oct 25 , 2023
    前回の記事からの続きです 硫化物系全固体リチウム電池負極の最近の進歩 —— パート 2 その他の陽極 著者:  JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 リチウム合金負極 界面副反応が激しいため、純粋なリチウムを短期的に硫化物固体電解質に直接使用することは困難であるため、リチウム合金材料はより魅力的な選択肢となります。金属リチウムアノードと比較して、リチウム合金アノードは界面の濡れ性を改善し、界面副反応の発生を抑制し、固体電解質界面の化学的および機械的安定性を高め、リチウムデンドライトの成長によって引き起こされる短絡を回避できます。同時に、液体リチウムイオン電池と比較して、合金負極は全固体電池においてより高いエネルギー密度とより優...
    続きを読む
  • P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池正極材料の電気化学的活性
    Nov 08 , 2023
    P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池正極材料の電気化学的活性 著者: ZHANG Xiaojun 1、LI Jiale 1,2、QIU Wujie 2,3、YANG Miaosen 1、LIU Jianjun 2,3,4 1. バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2. 高性能セラミックスおよび超微細微細構造の国家重点研究所、中国科学院、上海陶磁器研究所、上海200050、中国 3. 中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4. 中国科学院大学杭州高等研究所化学材料科学部、杭州310024、中国 抽象的な ナトリウムイオン電池は、低コストで原材料が広く流通しているという利点があるため、リチウムイオン電池の正極材料の最良の代替材料と考えられています。層状構造を...
    続きを読む
  • リチウム硫黄電池におけるホウ素系材料の最近の進歩
    Nov 22 , 2023
    リチウム硫黄電池におけるホウ素系材料の最近の進歩 著者:李高蘭、李紅陽、曾海波 MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Nano Optoelectronic Materials, Institute of Materials Science and Engineering, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 抽象的な リチウム硫黄 (Li-S) 電池は、その高エネルギー密度と低コストにより、次世代の電気化学エネルギー貯蔵技術の開発において重要な役割を果たします。しかし、その実用化は、変換反応の反応速度の...
    続きを読む
  • NCM、LFP、LFMPの性能比較
    Dec 18 , 2023
    1. リン酸鉄マンガンリチウムとは何ですか? リン酸鉄マンガンリチウムは、リン酸鉄リチウムに一定量のマンガン元素をドープして形成された新しい正極材料です。マンガン元素と鉄元素のイオン半径と一部の化学的性質が似ているため、リン酸鉄マンガンリチウムとリン酸鉄リチウムは構造が似ており、どちらもオリビン構造を持っています。リン酸マンガン鉄リチウムは、エネルギー密度の観点からはリン酸鉄リチウムよりも優れており、「リン酸鉄リチウムの改良版」とされています。 リン酸鉄マンガンリチウムは、リン酸鉄リチウムのエネルギー密度のボトルネックを突破することができます。現在、リン酸鉄リチウムの最大エネルギー密度は161~164Wh/kg程度で安定している。より高いエネルギー密度を有するリン酸塩ベースの材料であるリン酸鉄マンガンリチウムの応用は、リン酸鉄リチウムのエネルギー密度のボトルネックを打破するのに役立ち、工業...
    続きを読む
  • 全固体薄膜リチウム電池用アモルファスLiSiON薄膜電解質
    Jan 04 , 2024
    著者: XIA Qiuying、SUN Shuo、ZAN Feng、XU Jing、XIA Hui 南京科学技術大学材料科学工学院、南京210094、中国 抽象的な 全固体薄膜リチウム電池(TFLB)は、マイクロエレクトロニクスデバイスにとって理想的な電源とみなされています。しかし、アモルファス固体電解質のイオン伝導率は比較的低いため、TFLB の電気化学的性能の向上には限界があります。この研究では、TFLB 用の固体電解質として、マグネトロン スパッタリングによってアモルファス酸窒化リチウム シリコン (LiSiON) 薄膜を作製します。最適化された堆積条件により、LiSiON 薄膜は室温で 6.3×10-6 S・cm-1 の高いイオン伝導率と 5 V を超える広い電圧ウィンドウを示し、TFLB に適した薄膜電解質となります。MoO3/LiSiON/Li TFLB は、大きな比容量 (5...
    続きを読む
先頭ページ 1 2 3 4 5 最後のページ
[  の合計  5  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社