へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution
検索
  • 水性ナトリウムイオン電池用のプルシアンブルーカソード材料: 調製と電気化学的性能
    Sep 05 , 2022
    水性ナトリウムイオン電池用のプルシアンブルーカソード材料: 調製と電気化学的性能 著者 :李勇。水性ナトリウムイオン電池用プルシアン ブルー陰極材料: 準備と電気化学的性能。ジャーナル オブ 無機材料[J]、2019、34(4): 365-372 doi:10.15541/jim20180272 TOB ニューエナジー は リチウム イオン 電池 、 ナトリウムイオン電池 など プルシアンブルー (PB) は一種の有機金属骨格複合体であり、水性ナトリウム イオン電池の正極材料として幅広い用途の見通しを示しています。この研究では、PB複合材料は単一ソース法で調製されました。さらに、塩酸の反応温度、時間、濃度が PB の形態と電気化学的性能に及ぼす影響を体系的に調査しました。結果は、PBの結晶化度と電気化学的安定性が反応温度を上げることによって改善されることを示した。正極材として80℃で合成し...
    続きを読む
  • 最新のバッテリー技術の紹介
    Oct 11 , 2022
    電気自動車の開発が本格化しており、動力用バッテリーは最も重要な部品の 1 つです。その開発は、電気自動車のバッテリー寿命と安全性に決定的な影響を与えます。最近では、全固体電池、SVOLT のゼリー電池、NIO のニッケル 55 三元セル、リチウムを補うためにシリコンをドープした IM モーター、CTP/CTC 技術などの用語をよく耳にします。実際、非常に多くの技術的方向性があるため、基本的な目的はバッテリーのエネルギー密度と安全性を向上させることです。この記事では、エディターがそれに関連する技術的なパスを整理します。 エネルギー密度と安全性を向上させる方法 エンジニアは、バッテリー セルの密度を高めることと、システム (バッテリー パック) の密度を高めることの 2 つの同様の方法を使用して、バッテリー パックのエネルギー密度を高めるために頭を悩ませました。もちろん、エネルギー密度を向上さ...
    続きを読む
  • リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク
    Nov 03 , 2022
    リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク 著者:ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン。リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク。無機材料ジャーナル[J]、2021、36(2): 203-209 DOI:10.15541/jim20200161 TOBニューエナジー は、リチウム イオン電池、 ナトリウムイオン電池、 硫黄電池、全 固体 電池 さまざまな 電池材料 を提供し ています 。 お 見積り はお問い合わせください。 リチウム硫黄 (Li-S) 電池には硫黄元素が含まれており、天然に豊富に存在し、低コストで、比容量が大きい (1672 mAh∙g-1) という利点があります。しかし、硫黄元素の電気伝導率が低い (5×10-30 S·cm-...
    続きを読む
  • 全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質
    Mar 07 , 2023
    全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質 リャン・フェンチン、ウェン・ジャオイン 1. エネルギー変換用材料の CAS キー研究所、上海陶磁器研究所、中国科学院、上海 200050、中国 2. 中国科学院大学材料科学およびオプトエレクトロニクス工学センター、北京 100049、中国 概要 高い柔軟性と加工性を備えた固体高分子電解質 (SPE) により、さまざまな形状の漏れのない固体電池の製造が可能になります。ただし、SPE は通常、イオン伝導率が低く、リチウム金属アノードとの安定性が低いという問題があります。ここでは、ナノサイズの有機金属フレームワーク (MOF) 材料 (UiO-66) をポリ(エチレンオキシド) (PEO) ポリマー電解質のフィラーとして提案します。UiO-66 と PEO 鎖の酸素との配位、および UiO-66 とリチウム塩との相互作用に...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 1
    Mar 31 , 2023
    リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー - パート 1 LI Tingting、ZHANG Yang、CHEN Jiahang、MIN Yulin、WANG Jiulin。リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー。無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 概要 Li-S 電池のカソード材料としての硫化熱分解ポリ(アクリロニトリル) (S@pPAN) 複合材料は、ポリスルフィドの溶解なしに固体-固体変換反応メカニズムを実現します。ただし、その表面と界面の特性は電気化学的性能に大きく影響し、電気化学サイクル中に明らかな体積変化もあります。この研究では、単層カーボンナノチューブ(SWCNT)とカルボキシメチルセルロースナトリウム(CMC)をS@pPANカソードのバインダーとして使用し...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 2
    Apr 13 , 2023
    リチウム硫黄電池の S@pPAN 正極用フレキシブル バインダー - パート 2 LI Tingting、ZHANG Yang、CHEN Jiahang、MIN Yulin、WANG Jiulin。リチウム硫黄電池の S@pPAN カソード用の柔軟なバインダー。無機材料ジャーナル、2022 年、37(2): 182-188 DOI:10.15541/jim20210303 物理的特性のキャラクタリゼーション 材料中の硫黄の既存の形態は、XRDによって調査されました。複合材料では、インターカレートされた硫黄は、分子レベルであってもサイズが 10 ナノメートル未満の小さな粒子であり、非晶質複合材料を形成します。図 1 の 2θ=25.2° の特徴的なピークは、グラファイト化された結晶面 (002) に対応し、複合材料には硫黄の回折ピークはありません。これは、硫黄が S@pPAN で非晶質である...
    続きを読む
  • リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1
    Apr 25 , 2023
    リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China 概要 リチウム硫黄電池は、次世代の費用対効果が高くエネルギー密度の高いエネルギー貯蔵システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、レドックス反応の反応速度の遅さは、深刻な容量低下と速度性能の低下につながります。ここ...
    続きを読む
  • リチウムイオン円筒型セルの製造プロセス
    Jul 25 , 2023
    円筒型リチウムイオン電池は、エネルギー密度が高くサイクル寿命が長いため、多くの電子機器で広く使用されています。今回は、円筒形リチウムイオン電池の製造工程について詳しく説明します。   1. 原料の準備 製造プロセスの最初のステップは原材料の準備です。リチウムイオン電池の原材料には、正極材、負極材、電解質、セパレータが含まれます。バッテリーの品質を確保するには、これらの材料は高純度でなければなりません。 正極材料は通常、リン酸鉄リチウム (LFP)、マンガン酸ニッケルコバルトリチウム (NCM)、コバルト酸化リチウム (LCO)、マンガン酸化リチウム (LMO)、または酸化ニッケルコバルトアルミニウムリチウム (NCA) でできています。アノード材料は通常グラファイトでできており、電解質はリチウム塩と溶媒で構成されています。セパレータは通常、ポリエチレンまたはポリプロピレンでできて...
    続きを読む
  • デュアルリチウム塩ゲル複合体電解質: リチウム金属電池での調製と応用
    Aug 28 , 2023
    デュアルリチウム塩ゲル複合体電解質: リチウム金属電池での調製と応用 郭玉祥、黄立強、王剛、王紅志。デュアルリチウム塩ゲル複合体電解質: リチウム金属電池での調製と応用。無機材料ジャーナル、2023、38(7): 785-792 DOI: 10.15541/jim20220761 抽象的な 金属リチウムは、理論比容量が高く、還元電位が低く、埋蔵量が豊富であるため、高エネルギー密度リチウムイオン電池にとって理想的な負極の 1 つです。しかし、Li アノードの用途には、従来の有機液体電解質との深刻な不適合性があります。ここでは、金属リチウムアノードとの良好な適合性を備えたゲル複合電解質(GCE)を、その場重合によって構築しました。電解液に導入された二重リチウム塩システムはポリマー成分と協働することができ、これにより電解液の電気化学ウィンドウが市販の電解液の 3.92 V と比較して 5.26 ...
    続きを読む
  • 全固体電池: 整備士の重要な役割
    Sep 27 , 2023
    セルギイ・カルナウスら 全固体電池: 整備士の重要な役割。科学。381、1300 (2023)。 リチウム金属アノードを備えた全固体電池には、エネルギー密度が高く、寿命が長く、動作温度が広く、安全性が向上する可能性があります。研究の大部分は、材料と界面の輸送速度論と電気化学的安定性の改善に焦点を当てていますが、材料力学の調査を必要とする重大な課題もあります。固体-固体界面を備えた電池では、機械的接触、および固体電池の動作中の応力の発生が、これらの界面での安定した電荷移動を維持するための電気化学的安定性と同じくらい重要になります。このレビューでは、通常および長期間のバッテリー サイクルから生じるストレスと歪み、およびストレスを軽減するための関連メカニズムに焦点を当てます。その一部はバッテリーの故障につながります。   背景 全固体電池 (SSB) には、日常の電話や電気自動車に使用...
    続きを読む
  • 硫化物系全固体リチウム電池用負極の最近の進歩
    Oct 08 , 2023
    硫化物系全固体リチウム電池負極の最近の進歩 —— パート 1リチウム金属負極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 抽象的な 全固体リチウム電池 (ASSLB) は、現在の液体リチウム電池よりも高いエネルギー密度と安全性を示し、次世代エネルギー貯蔵デバイスの主な研究方向となっています。硫化物固体電解質(SSE)は、他の固体電解質と比較して、超高イオン伝導度、低硬度、加工容易、界面接触良好などの特徴を有しており、全固体電解質を実現するための最も有望な手段の一つです。 -状態のバッテリー。ただし、アノードと SSE の間には、界面副反応、剛性接触不良、リチウムデンドライトなど、用途を制限する界面の問題がいくつかあります。この研究では...
    続きを読む
  • 硫化物系全固体リチウム電池用負極に関する最近の進歩 — その他の負極
    Oct 25 , 2023
    前回の記事からの続きです 硫化物系全固体リチウム電池負極の最近の進歩 —— パート 2 その他の陽極 著者:  JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 リチウム合金負極 界面副反応が激しいため、純粋なリチウムを短期的に硫化物固体電解質に直接使用することは困難であるため、リチウム合金材料はより魅力的な選択肢となります。金属リチウムアノードと比較して、リチウム合金アノードは界面の濡れ性を改善し、界面副反応の発生を抑制し、固体電解質界面の化学的および機械的安定性を高め、リチウムデンドライトの成長によって引き起こされる短絡を回避できます。同時に、液体リチウムイオン電池と比較して、合金負極は全固体電池においてより高いエネルギー密度とより優...
    続きを読む
  • リチウム硫黄電池におけるホウ素系材料の最近の進歩
    Nov 22 , 2023
    リチウム硫黄電池におけるホウ素系材料の最近の進歩 著者:李高蘭、李紅陽、曾海波 MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Nano Optoelectronic Materials, Institute of Materials Science and Engineering, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 抽象的な リチウム硫黄 (Li-S) 電池は、その高エネルギー密度と低コストにより、次世代の電気化学エネルギー貯蔵技術の開発において重要な役割を果たします。しかし、その実用化は、変換反応の反応速度の...
    続きを読む
  • NCM、LFP、LFMPの性能比較
    Dec 18 , 2023
    1. リン酸鉄マンガンリチウムとは何ですか? リン酸鉄マンガンリチウムは、リン酸鉄リチウムに一定量のマンガン元素をドープして形成された新しい正極材料です。マンガン元素と鉄元素のイオン半径と一部の化学的性質が似ているため、リン酸鉄マンガンリチウムとリン酸鉄リチウムは構造が似ており、どちらもオリビン構造を持っています。リン酸マンガン鉄リチウムは、エネルギー密度の観点からはリン酸鉄リチウムよりも優れており、「リン酸鉄リチウムの改良版」とされています。 リン酸鉄マンガンリチウムは、リン酸鉄リチウムのエネルギー密度のボトルネックを突破することができます。現在、リン酸鉄リチウムの最大エネルギー密度は161~164Wh/kg程度で安定している。より高いエネルギー密度を有するリン酸塩ベースの材料であるリン酸鉄マンガンリチウムの応用は、リン酸鉄リチウムのエネルギー密度のボトルネックを打破するのに役立ち、工業...
    続きを読む
  • 全固体薄膜リチウム電池用アモルファスLiSiON薄膜電解質
    Jan 04 , 2024
    著者: XIA Qiuying、SUN Shuo、ZAN Feng、XU Jing、XIA Hui 南京科学技術大学材料科学工学院、南京210094、中国 抽象的な 全固体薄膜リチウム電池(TFLB)は、マイクロエレクトロニクスデバイスにとって理想的な電源とみなされています。しかし、アモルファス固体電解質のイオン伝導率は比較的低いため、TFLB の電気化学的性能の向上には限界があります。この研究では、TFLB 用の固体電解質として、マグネトロン スパッタリングによってアモルファス酸窒化リチウム シリコン (LiSiON) 薄膜を作製します。最適化された堆積条件により、LiSiON 薄膜は室温で 6.3×10-6 S・cm-1 の高いイオン伝導率と 5 V を超える広い電圧ウィンドウを示し、TFLB に適した薄膜電解質となります。MoO3/LiSiON/Li TFLB は、大きな比容量 (5...
    続きを読む
  • 硫化物固体電池の正極および負極の作製および組立方法
    Feb 01 , 2024
    近年、Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al、P)、Li6PS5X(X)などの硫化物固体電解質の開発が急速に進んでいます。 =Cl、Br、I)。特に、Li10GeP2S12(LGPS)に代表されるチオLISICON構造硫化物は、室温で液体電解質を超える12mS/cmという極めて高いリチウムイオン伝導度を示し、固体電解質の固有伝導度が不十分であるという欠点を部分的に解決しました。 図1(a)は2.2cm×2.2cmのLi1.5Al0.5Ge1.5(PO4)3を用いた全固体リチウム電池を示しています。これは、ガラスセラミック固体電解質シート、LiFePO4 正極材料、PEO ベースのポリマー修飾層、および金属リチウム負極から組み立てられています。室温で正常に放電し、LEDライトを点灯できます。そのコアコンポーネントの...
    続きを読む
  • 全固体電池用固体電解質4種類
    Mar 18 , 2024
    全固体電池が業界のトレンドになっているのはなぜですか? 高いセキュリティ: 液体電池の安全性の問題は常に批判されてきました。電解液は高温や強い衝撃を受けると容易に引火します。高電流下では、リチウム樹枝状結晶がセパレータを突き破って短絡を引き起こすこともあります。場合によっては、電解質が高温で副反応を起こしたり、分解したりすることがあります。液体電解質の熱安定性は 100°C までしか維持できませんが、酸化物固体電解質は 800°C に達し、硫化物やハロゲン化物は 400°C に達することもあります。固体酸化物は液体よりも安定しており、固体であるため耐衝撃性は液体よりもはるかに高くなります。したがって、全固体電池は人々の安全に対するニーズを満たすことができます。 高いエネルギー密度: 現在のところ、固体電池は液体電池を超えるエネルギー密度を達成していませんが、理論的には固体電池は非常に高いエ...
    続きを読む
  • バッテリー電極のバリによるショートを検出するにはどうすればよいですか?
    May 09 , 2024
    この記事では、ゼロ電圧の原因を分析します。電極バリによるバッテリーの電圧ゼロ現象に着目。ショートの原因を特定することで、問題を正確に解決し、生産時の電極バリ管理の重要性をより深く理解することを目指しています。 実験 1. 電池の準備 この実験では、正極活物質としてリチウム ニッケル コバルト マンガン酸塩材料 (NCM111) を使用します。正極活物質、SPカーボンブラック、PVDFバインダー、およびNMP溶媒を質量比66:2:2:30で混合してスラリーを作製する。このスラリーを厚さ15μmのカーボンコートアルミ箔上に塗布し、片面の塗布量は270g/m 2 とした。正極を温度(120±3)℃のオーブンに入れて24時間乾燥させた後、電極の圧縮密度が3.28g/cm3になるようにカレンダー加工を行います。負極活物質にはチタン酸リチウム材料Li4Ti5O12を使用しています。負極活物質、SPカー...
    続きを読む
先頭ページ 1 2 最後のページ
[  の合計  2  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社