へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

リン酸鉄マンガンリチウム

  • 水性ナトリウムイオン電池用のプルシアンブルーカソード材料: 調製と電気化学的性能
    Sep 05 , 2022
    水性ナトリウムイオン電池用のプルシアンブルーカソード材料: 調製と電気化学的性能 著者 :李勇。水性ナトリウムイオン電池用プルシアン ブルー陰極材料: 準備と電気化学的性能。ジャーナル オブ 無機材料[J]、2019、34(4): 365-372 doi:10.15541/jim20180272 TOB ニューエナジー は リチウム イオン 電池 、 ナトリウムイオン電池 など プルシアンブルー (PB) は一種の有機金属骨格複合体であり、水性ナトリウム イオン電池の正極材料として幅広い用途の見通しを示しています。この研究では、PB複合材料は単一ソース法で調製されました。さらに、塩酸の反応温度、時間、濃度が PB の形態と電気化学的性能に及ぼす影響を体系的に調査しました。結果は、PBの結晶化度と電気化学的安定性が反応温度を上げることによって改善されることを示した。正極材として80℃で合成し...
    続きを読む
  • 最新のバッテリー技術の紹介
    Oct 11 , 2022
    電気自動車の開発が本格化しており、動力用バッテリーは最も重要な部品の 1 つです。その開発は、電気自動車のバッテリー寿命と安全性に決定的な影響を与えます。最近では、全固体電池、SVOLT のゼリー電池、NIO のニッケル 55 三元セル、リチウムを補うためにシリコンをドープした IM モーター、CTP/CTC 技術などの用語をよく耳にします。実際、非常に多くの技術的方向性があるため、基本的な目的はバッテリーのエネルギー密度と安全性を向上させることです。この記事では、エディターがそれに関連する技術的なパスを整理します。 エネルギー密度と安全性を向上させる方法 エンジニアは、バッテリー セルの密度を高めることと、システム (バッテリー パック) の密度を高めることの 2 つの同様の方法を使用して、バッテリー パックのエネルギー密度を高めるために頭を悩ませました。もちろん、エネルギー密度を向上さ...
    続きを読む
  • 超高ニッケル LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 正極材料
    Oct 11 , 2022
    超高ニッケルLiNi0.91Co0.06Al0.03O2@Ca3(PO4)2カソード材料の強化されたリチウム貯蔵安定性メカニズム 著者: 朱和真、王玄鵬、韓康、楊陳、万瑞哲、呉立明、麻利強。超高ニッケル LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 カソード材料の強化されたリチウム貯蔵安定性メカニズム。無機材料ジャーナル、2022 年、37(9): 1030-1036 DOI:10.15541/jim20210769 新しいリチウムイオン電池のカソードとしての超高ニッケル材料は、その高い比容量、高電圧、および低コストのために多くの注目を集めています。しかし、サイクル中に生成されたマイクロクラック、機械的粉砕、および不可逆的な相転移により、サイクル安定性が低下します。ここでは、Ca3(PO4)2 でコーティングされた一連の超高ニッケル LiNi0.91Co0.06Al0....
    続きを読む
  • リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク
    Nov 03 , 2022
    リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク 著者:ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン。リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク。無機材料ジャーナル[J]、2021、36(2): 203-209 DOI:10.15541/jim20200161 TOBニューエナジー は、リチウム イオン電池、 ナトリウムイオン電池、 硫黄電池、全 固体 電池 さまざまな 電池材料 を提供し ています 。 お 見積り はお問い合わせください。 リチウム硫黄 (Li-S) 電池には硫黄元素が含まれており、天然に豊富に存在し、低コストで、比容量が大きい (1672 mAh∙g-1) という利点があります。しかし、硫黄元素の電気伝導率が低い (5×10-30 S·cm-...
    続きを読む
  • 高品質 Fe4[Fe(CN)6]3 ナノキューブの調製
    Jan 30 , 2023
    高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質の Fe4[Fe(CN)6]3 (HQ-FeHCF) ナノキューブは、単純な熱水法によって合成されました。その構造、形態および含水量が特徴付けられます。Fe4[Fe(CN)6]3 は正立方体の形状を示し、均一なサイズは約 100 mm です。面心立方相に属する 500 nm。Fe4[Fe(CN)6]3 は、1C、2C、5C、10C、20C、30C、および 40C レートで、それぞれ 124、118...
    続きを読む
  • Fe4[Fe(CN)6]3 ナノキューブの構造解析
    Feb 16 , 2023
    高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 パート 2: Fe4[Fe(CN)6]3 ナノキューブの構造キャラクタリゼーション 図 1(a) は、HQ-FeHCF と LQ-FeHCF の XRD パターンを示しています。図から、HQ-FeHCF のすべての回折ピークが JCPDS NO. と一致していることがわかります。01-0239 カード。合成された HQ-FeHCF は、fm-3m 空間点群 a=b=c=0.51 nm、α=β=γ=90°...
    続きを読む
  • 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験
    Feb 28 , 2023
    高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験 最初に、Na-H2O-PEG 電解質中の HQ-FeHCF および LQ-FeHCF の電気化学的性能を、3 電極システムを使用してテストしました。図 4(a) は、1 mV s-1 のスキャン レートでの Na-H2O-PEG 電解液中の HQ-FeHCF および LQ-FeHCF のサイクリック ボルタンメトリー曲線を示しています...
    続きを読む
  • 全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質
    Mar 07 , 2023
    全固体リチウム電池用MOF/ポリ(エチレンオキサイド)複合高分子電解質 リャン・フェンチン、ウェン・ジャオイン 1. エネルギー変換用材料の CAS キー研究所、上海陶磁器研究所、中国科学院、上海 200050、中国 2. 中国科学院大学材料科学およびオプトエレクトロニクス工学センター、北京 100049、中国 概要 高い柔軟性と加工性を備えた固体高分子電解質 (SPE) により、さまざまな形状の漏れのない固体電池の製造が可能になります。ただし、SPE は通常、イオン伝導率が低く、リチウム金属アノードとの安定性が低いという問題があります。ここでは、ナノサイズの有機金属フレームワーク (MOF) 材料 (UiO-66) をポリ(エチレンオキシド) (PEO) ポリマー電解質のフィラーとして提案します。UiO-66 と PEO 鎖の酸素との配位、および UiO-66 とリチウム塩との相互作用に...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 1
    Mar 31 , 2023
    リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 1 リー・ティンティン、チャン・ヤン、チェン・ジアハン、ミン・ユーリン、ワン・ジウリン。 リチウム硫黄電池のS@pPAN正極用フレキシブルバインダーです。 無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 要約 Li-S電池の正極材料として硫化熱分解ポリ(アクリロニトリル)(S@pPAN)複合材料を使用することで、多硫化物を溶解することなく固体-固体変換反応機構を実現します。ただし、その表面および界面の特性は電気化学的性能に大きく影響し、電気化学サイクル中に明らかな体積変化も発生します。この研究では、単層カーボンナノチューブ(SWCNT)とカルボキシメチルセルロースナトリウム(CMC)をS@pPAN正極のバインダーとして使用し、S@pPANの表面を制御し、...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 2
    Apr 13 , 2023
    リチウム硫黄電池 S@pPAN 正極用フレキシブルバインダー - パート 2 リー・ティンティン、チャン・ヤン、チェン・ジアハン、ミン・ユーリン、ワン・ジウリン。 リチウム硫黄電池のS@pPAN正極用フレキシブルバインダーです。 無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 物性 特性評価 S@pPAN に存在する硫黄の形態 材料はXRDによって調査されました。複合材料では、挿入された硫黄により、 分子レベルであっても、サイズが10ナノメートル未満の小さな粒子であること レベル、非晶質複合材料を形成します。 2θ=25.2°での特徴的なピーク 図 1 は黒鉛化結晶面 (002) に対応しており、 複合材料の硫黄回折ピーク。これは、硫黄が S@pPAN では非晶質。 図 1 XRD S@pPANのパターン 引張強度試験はSCM...
    続きを読む
  • リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1
    Apr 25 , 2023
    リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、何・ハイチュアン、ウー・ジエ、張夢源、李雅娟、劉友年 中南大学化学・化学工学部、マイクロ&ナノ材料界面科学の湖南省重点実験室、中国長沙市410083 要約 リチウム硫黄電池は、エネルギー貯蔵用のコスト効率が高く、エネルギー密度の高い次世代システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、酸化還元反応速度の遅さにより、深刻な容量低下とレート性能の低下が生じます。ここでは、コバルトナノ粒子が埋め込まれたクエン酸ナトリウム由来の三次元中空炭素骨格が、硫黄陰極のホストとして設計されています。導入されたコバルトナノ粒子は、多硫化物を効果的に吸着し、変換反応の速度論を強化し、サイクル性能とレート性能をさらに向上させることができます。得られた正極は、0.5C で 12...
    続きを読む
  • 正極電極スラリーの安定性に及ぼす電池原料の影響
    May 12 , 2023
    電池スラリーは粘度の高い固液です。 二相サスペンション システムを使用し、このシステムの安定性を評価するには、 最初のステップは、その組成と機能特性を研究することです。ほとんどの リチウム産業では、混合して形成される混合物である石油ベースのスラリーが使用されます。 活物質、結着剤、導電剤、溶剤等を分散させる。 一定の比率と順序。 カソードアクティブ 材料 メインとして カソードスラリー中の電気化学的活性成分、カソード活物質 電圧、エネルギー密度、その他の基本特性を決定します。 バッテリーであり、スラリーシステムの核心です。粒子サイズ 分布、比表面積、pHまたは残留アルカリ値など 活物質の特性はスラリーの安定性に影響します。 粒子 サイズ分布: 粒子 活物質のサイズと粒度分布は重要です スラリー製造プロセスにおける重要な要素。活性物質の粒子が小さいほど、 材料の粘度が高いほど、連続相の粘度は...
    続きを読む
  • 電池電極の塗布方法
    May 16 , 2023
    バッテリー電極コーティングは重要です バッテリーの製造プロセスは性能に影響を与えるため、 効率と最終製品の品質。電極コーティングには以下が含まれます。 金属箔や電流などの基板上にスラリーを塗布すること コレクタを使用して、活性材料の均一で薄い層を作成します。 エネルギーを貯蔵および放出できるコバルト酸リチウム、グラファイト、またはシリコン 充電および放電サイクル中。電極コーティングは次の方法で実現できます。 さまざまな方法があり、それぞれに独自の原理、特徴、利点があり、 予防。この記事は、最も一般的なものの概要を提供することを目的としています。 電池製造に使用される電極コーティング方法。 ドクターブレードコーティング ドクターブレードコーティングは定評があります ドクターと呼ばれる金属製の刃を使用する広く使用されている方法 ブレードを使用して余分なスラリーを削り取り、滑らかで均一な膜を作成...
    続きを読む
  • 電池正極スラリーの調製方法
    Jun 02 , 2023
    電池正極スラリーの調製方法 湿式電極作製工程 カソード電極としてダブルプラネタリーミキサーを使用したスラリー調製装置。まず、ポリフッ化ビニリデン(PVDF)接着剤を準備します。通常の混合タンクを使用して、まず溶剤NMP(N-メチルピロリドン)を一定量注ぎ、設計された固形分含有量に従ってバインダーPVDF粉末を加え、4〜6時間撹拌してPVDF接着剤を得る。 PVDF接着剤は一定の粘度を持った無色透明の液体で、固形分含有量は必要に応じて5%~10%の間で制御できます。調製した接着剤溶液は通常、撹拌プロセス中に発生する気泡を除去するために真空引きし、12 時間以上放置する必要があります。次に、密閉されたパイプラインを通って定量ポンプを介して一定量がスラリー調製ミキサーに送られます。導電剤SPを加え、ミキサーを回転させながら同時に回転させます。公転速度を(25±5)r/min、自転速度を(500±...
    続きを読む
  • リチウムイオン電池負極電極スラリーの製造工程
    Jun 19 , 2023
    リチウムイオン電池は広く使われています。 高いエネルギー密度と長いサイクル寿命により、さまざまな分野で使用されています。 環境への優しさ。アノード電極スラリーが鍵の一つ 性能と安全性に影響を与えるリチウムイオン電池の成分 バッテリーの。したがって、準備を理解することが重要です アノード電極スラリーの製造方法と注意事項 陽極の作製工程 電極スラリーは原料調製、 混合、コーティング、乾燥。 1. 原料の準備 生の アノード電極スラリーの材料には主に活物質が含まれており、 導電剤、バインダー、溶剤。活物質がメインです グラファイト、シリコン、バッテリー内のリチウムイオンと電子の供給源。 錫およびその合金または複合物。導電剤は改善のために使用されます。 スラリーとカーボンなどの電極の導電率 黒、グラフェン、カーボンナノチューブ。バインダーは活性物質を結合するために使用されます。 材料と導電剤を一緒...
    続きを読む
  • 電池電極カレンダー加工機の原理と機能
    Jul 12 , 2023
    リチウムイオン電池は広く使われています。 電気自動車、家電、エネルギー貯蔵などのさまざまな分野 そして航空宇宙。リチウムイオン電池の性能と品質は、 電極材料とその加工方法。重要なプロセスの 1 つ 電極の製造では、カレンダー加工が行われます。これは、電極を圧縮することです。 電極スラリーは、一対のローラーによって集電箔上に塗布されます。 カレンダー加工により、密度、導電性、接着性、機械的特性が向上します。 電極の強度を向上させるだけでなく、厚さと気孔率を低減します。 ただし、カレンダー加工にはひび割れや層間剥離などの欠点もあります。 ストレスの蓄積と能力の低下。したがって、最適化することが重要です カレンダー加工パラメータを調整し、さまざまな用途に適した装置を選択します。 電極の種類と仕様 電池電極カレンダー加工機(ローリングプレス機)というデバイスです 反対方向に回転して適用する 2 つ...
    続きを読む
  • リチウムイオン円筒型セルの製造プロセス
    Jul 25 , 2023
    リチウムイオン 円筒形電池は、その特性により多くの電子機器で広く使用されています。 高いエネルギー密度と長いサイクル寿命。この記事では、 円筒形リチウムイオン電池の製造プロセスを詳しく説明します。 1. リチウムイオン電池M材料準備 最初の一歩 製造プロセスは原材料の準備です。原材料 リチウムイオン電池に使用される材料には、正極材料、負極材料、 電解液とセパレーター。これらの材料は高純度でなければなりません。 バッテリーの品質 正極材料 通常、リン酸鉄リチウム(LFP)、マンガン酸ニッケルコバルトリチウムで作られています。 (NCM)、コバルト酸リチウム (LCO)、マンガン酸化リチウム (LMO)、またはリチウム ニッケルコバルトアルミニウム酸化物(NCA)。アノード材料は通常、次のものでできています。 電解質はリチウム塩と溶媒で構成されています。の セパレータは通常、ポリエチレンまたは...
    続きを読む
  • Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材
    Aug 09 , 2023
    Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料 孔国強、レン・ミンツェ、周振栄、夏 チー、シェン・シャオファン。 Sb ドープ O3 タイプ Na0.9Ni0.5Mn0.3Ti0.2O2 カソード Naイオン電池用素材[J]。無機材料ジャーナル、2023、38(6): 656-662. 要約 サイクル安定性と比容量 ナトリウムイオン電池の正極材料は、 その幅広い用途。具体的な導入戦略に基づき、 ヘテロ元素を使用して構造安定性と比容量を最適化します。 正極材料、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、 0.06)を簡単な固相反応法で調製したSbの効果 Na0.9Ni0.5Mn0.3Ti0.2O2のナトリウム貯蔵特性に及ぼすドーピング量 正極材料を調査した。特性評価の結果は、 遷移金属中の酸...
    続きを読む
  • デュアルリチウム塩ゲル複合体電解質: リチウム金属電池での調製と応用
    Aug 28 , 2023
    デュアルリチウム塩ゲル 複合電解質:リチウム金属電池yにおける調製と応用 郭玉祥、黄 李強、王剛、王紅志。 デュアルリチウム塩ゲル複合体 電解質: リチウム金属電池の調製と応用。 ジャーナル 無機材料、2023、38(7): 785-792 DOI:10.15541/jim20220761 要約 金属リチウムは、高エネルギー密度のリチウムイオンにとって理想的な負極の 1 つです。 高い理論比容量、低い還元電位によるバッテリー 豊富な埋蔵量も。ただし、Li アノードの用途には次のような問題があります。 従来の有機液体電解質とは重大な相溶性がありません。ここで、 金属Liとの相溶性が良好なゲル複合電解質(GCE) アノードはその場重合によって構築されました。ダブル 電解質に導入されたリチウム塩システムは、 ポリマー成分。電解質の電気化学ウィンドウを広げます。 市販の電解液の3.92Vに比べ5....
    続きを読む
  • Na3Zr2Si2PO12 Naイオン電池用セラミック電解質
    Sep 11 , 2023
    Na3Zr2Si2PO12セラミック Naイオン電池用電解質:スプレードライ法による調製とその方法 プロパティ 著者李文凱、趙寧、BI志傑、郭祥新。 Na3Zr2Si2PO12 Naイオン電池用セラミック電解質: を使用した調製 噴霧乾燥法とその性質 無機材料ジャーナル、2022、37(2): 189-196 DOI:10.15541/jim20210486 要約 Naイオン電池は現在、可燃性および爆発性の有機物を使用しています。 電解質、高性能ナトリウムイオン固体の開発が急務となっている より安全で実用的な用途を実現する電解液。 Na3Zr2Si2PO12 はその 1 つです。 広い電気化学ウィンドウを備えた最も有望な固体ナトリウム電解質、 高い機械的強度、優れた空気安定性、および高いイオン伝導性。 しかし、セラミック粒子とバインダーが不均一に混合されるため、 グリーンボディ内の細孔が非...
    続きを読む
先頭ページ 1 2 3 4 5 6 最後のページ
[  の合計  6  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社