へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

バッテリーの負極

  • リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 1
    Mar 31 , 2023
    リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 1 リー・ティンティン、チャン・ヤン、チェン・ジアハン、ミン・ユーリン、ワン・ジウリン。 リチウム硫黄電池のS@pPAN正極用フレキシブルバインダーです。 無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 要約 Li-S電池の正極材料として硫化熱分解ポリ(アクリロニトリル)(S@pPAN)複合材料を使用することで、多硫化物を溶解することなく固体-固体変換反応機構を実現します。ただし、その表面および界面の特性は電気化学的性能に大きく影響し、電気化学サイクル中に明らかな体積変化も発生します。この研究では、単層カーボンナノチューブ(SWCNT)とカルボキシメチルセルロースナトリウム(CMC)をS@pPAN正極のバインダーとして使用し、S@pPANの表面を制御し、...
    続きを読む
  • リチウム硫黄電池の S@pPAN 正極用フレキシブルバインダー - パート 2
    Apr 13 , 2023
    リチウム硫黄電池 S@pPAN 正極用フレキシブルバインダー - パート 2 リー・ティンティン、チャン・ヤン、チェン・ジアハン、ミン・ユーリン、ワン・ジウリン。 リチウム硫黄電池のS@pPAN正極用フレキシブルバインダーです。 無機材料ジャーナル、2022、37(2): 182-188 DOI:10.15541/jim20210303 物性 特性評価 S@pPAN に存在する硫黄の形態 材料はXRDによって調査されました。複合材料では、挿入された硫黄により、 分子レベルであっても、サイズが10ナノメートル未満の小さな粒子であること レベル、非晶質複合材料を形成します。 2θ=25.2°での特徴的なピーク 図 1 は黒鉛化結晶面 (002) に対応しており、 複合材料の硫黄回折ピーク。これは、硫黄が S@pPAN では非晶質。 図 1 XRD S@pPANのパターン 引張強度試験はSCM...
    続きを読む
  • リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1
    Apr 25 , 2023
    リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、何・ハイチュアン、ウー・ジエ、張夢源、李雅娟、劉友年 中南大学化学・化学工学部、マイクロ&ナノ材料界面科学の湖南省重点実験室、中国長沙市410083 要約 リチウム硫黄電池は、エネルギー貯蔵用のコスト効率が高く、エネルギー密度の高い次世代システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、酸化還元反応速度の遅さにより、深刻な容量低下とレート性能の低下が生じます。ここでは、コバルトナノ粒子が埋め込まれたクエン酸ナトリウム由来の三次元中空炭素骨格が、硫黄陰極のホストとして設計されています。導入されたコバルトナノ粒子は、多硫化物を効果的に吸着し、変換反応の速度論を強化し、サイクル性能とレート性能をさらに向上させることができます。得られた正極は、0.5C で 12...
    続きを読む
  • 正極電極スラリーの安定性に及ぼす電池原料の影響
    May 12 , 2023
    電池スラリーは粘度の高い固液です。 二相サスペンション システムを使用し、このシステムの安定性を評価するには、 最初のステップは、その組成と機能特性を研究することです。ほとんどの リチウム産業では、混合して形成される混合物である石油ベースのスラリーが使用されます。 活物質、結着剤、導電剤、溶剤等を分散させる。 一定の比率と順序。 カソードアクティブ 材料 メインとして カソードスラリー中の電気化学的活性成分、カソード活物質 電圧、エネルギー密度、その他の基本特性を決定します。 バッテリーであり、スラリーシステムの核心です。粒子サイズ 分布、比表面積、pHまたは残留アルカリ値など 活物質の特性はスラリーの安定性に影響します。 粒子 サイズ分布: 粒子 活物質のサイズと粒度分布は重要です スラリー製造プロセスにおける重要な要素。活性物質の粒子が小さいほど、 材料の粘度が高いほど、連続相の粘度は...
    続きを読む
  • 電池電極の塗布方法
    May 16 , 2023
    バッテリー電極コーティングは重要です バッテリーの製造プロセスは性能に影響を与えるため、 効率と最終製品の品質。電極コーティングには以下が含まれます。 金属箔や電流などの基板上にスラリーを塗布すること コレクタを使用して、活性材料の均一で薄い層を作成します。 エネルギーを貯蔵および放出できるコバルト酸リチウム、グラファイト、またはシリコン 充電および放電サイクル中。電極コーティングは次の方法で実現できます。 さまざまな方法があり、それぞれに独自の原理、特徴、利点があり、 予防。この記事は、最も一般的なものの概要を提供することを目的としています。 電池製造に使用される電極コーティング方法。 ドクターブレードコーティング ドクターブレードコーティングは定評があります ドクターと呼ばれる金属製の刃を使用する広く使用されている方法 ブレードを使用して余分なスラリーを削り取り、滑らかで均一な膜を作成...
    続きを読む
  • 電池正極スラリーの調製方法
    Jun 02 , 2023
    電池正極スラリーの調製方法 湿式電極作製工程 カソード電極としてダブルプラネタリーミキサーを使用したスラリー調製装置。まず、ポリフッ化ビニリデン(PVDF)接着剤を準備します。通常の混合タンクを使用して、まず溶剤NMP(N-メチルピロリドン)を一定量注ぎ、設計された固形分含有量に従ってバインダーPVDF粉末を加え、4〜6時間撹拌してPVDF接着剤を得る。 PVDF接着剤は一定の粘度を持った無色透明の液体で、固形分含有量は必要に応じて5%~10%の間で制御できます。調製した接着剤溶液は通常、撹拌プロセス中に発生する気泡を除去するために真空引きし、12 時間以上放置する必要があります。次に、密閉されたパイプラインを通って定量ポンプを介して一定量がスラリー調製ミキサーに送られます。導電剤SPを加え、ミキサーを回転させながら同時に回転させます。公転速度を(25±5)r/min、自転速度を(500±...
    続きを読む
  • リチウムイオン電池負極電極スラリーの製造工程
    Jun 19 , 2023
    リチウムイオン電池は広く使われています。 高いエネルギー密度と長いサイクル寿命により、さまざまな分野で使用されています。 環境への優しさ。アノード電極スラリーが鍵の一つ 性能と安全性に影響を与えるリチウムイオン電池の成分 バッテリーの。したがって、準備を理解することが重要です アノード電極スラリーの製造方法と注意事項 陽極の作製工程 電極スラリーは原料調製、 混合、コーティング、乾燥。 1. 原料の準備 生の アノード電極スラリーの材料には主に活物質が含まれており、 導電剤、バインダー、溶剤。活物質がメインです グラファイト、シリコン、バッテリー内のリチウムイオンと電子の供給源。 錫およびその合金または複合物。導電剤は改善のために使用されます。 スラリーとカーボンなどの電極の導電率 黒、グラフェン、カーボンナノチューブ。バインダーは活性物質を結合するために使用されます。 材料と導電剤を一緒...
    続きを読む
  • 電池電極カレンダー加工機の原理と機能
    Jul 12 , 2023
    リチウムイオン電池は広く使われています。 電気自動車、家電、エネルギー貯蔵などのさまざまな分野 そして航空宇宙。リチウムイオン電池の性能と品質は、 電極材料とその加工方法。重要なプロセスの 1 つ 電極の製造では、カレンダー加工が行われます。これは、電極を圧縮することです。 電極スラリーは、一対のローラーによって集電箔上に塗布されます。 カレンダー加工により、密度、導電性、接着性、機械的特性が向上します。 電極の強度を向上させるだけでなく、厚さと気孔率を低減します。 ただし、カレンダー加工にはひび割れや層間剥離などの欠点もあります。 ストレスの蓄積と能力の低下。したがって、最適化することが重要です カレンダー加工パラメータを調整し、さまざまな用途に適した装置を選択します。 電極の種類と仕様 電池電極カレンダー加工機(ローリングプレス機)というデバイスです 反対方向に回転して適用する 2 つ...
    続きを読む
  • リチウムイオン円筒型セルの製造プロセス
    Jul 25 , 2023
    リチウムイオン 円筒形電池は、その特性により多くの電子機器で広く使用されています。 高いエネルギー密度と長いサイクル寿命。この記事では、 円筒形リチウムイオン電池の製造プロセスを詳しく説明します。 1. リチウムイオン電池M材料準備 最初の一歩 製造プロセスは原材料の準備です。原材料 リチウムイオン電池に使用される材料には、正極材料、負極材料、 電解液とセパレーター。これらの材料は高純度でなければなりません。 バッテリーの品質 正極材料 通常、リン酸鉄リチウム(LFP)、マンガン酸ニッケルコバルトリチウムで作られています。 (NCM)、コバルト酸リチウム (LCO)、マンガン酸化リチウム (LMO)、またはリチウム ニッケルコバルトアルミニウム酸化物(NCA)。アノード材料は通常、次のものでできています。 電解質はリチウム塩と溶媒で構成されています。の セパレータは通常、ポリエチレンまたは...
    続きを読む
  • Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材
    Aug 09 , 2023
    Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料 孔国強、レン・ミンツェ、周振栄、夏 チー、シェン・シャオファン。 Sb ドープ O3 タイプ Na0.9Ni0.5Mn0.3Ti0.2O2 カソード Naイオン電池用素材[J]。無機材料ジャーナル、2023、38(6): 656-662. 要約 サイクル安定性と比容量 ナトリウムイオン電池の正極材料は、 その幅広い用途。具体的な導入戦略に基づき、 ヘテロ元素を使用して構造安定性と比容量を最適化します。 正極材料、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、 0.06)を簡単な固相反応法で調製したSbの効果 Na0.9Ni0.5Mn0.3Ti0.2O2のナトリウム貯蔵特性に及ぼすドーピング量 正極材料を調査した。特性評価の結果は、 遷移金属中の酸...
    続きを読む
  • デュアルリチウム塩ゲル複合体電解質: リチウム金属電池での調製と応用
    Aug 28 , 2023
    デュアルリチウム塩ゲル 複合電解質:リチウム金属電池yにおける調製と応用 郭玉祥、黄 李強、王剛、王紅志。 デュアルリチウム塩ゲル複合体 電解質: リチウム金属電池の調製と応用。 ジャーナル 無機材料、2023、38(7): 785-792 DOI:10.15541/jim20220761 要約 金属リチウムは、高エネルギー密度のリチウムイオンにとって理想的な負極の 1 つです。 高い理論比容量、低い還元電位によるバッテリー 豊富な埋蔵量も。ただし、Li アノードの用途には次のような問題があります。 従来の有機液体電解質とは重大な相溶性がありません。ここで、 金属Liとの相溶性が良好なゲル複合電解質(GCE) アノードはその場重合によって構築されました。ダブル 電解質に導入されたリチウム塩システムは、 ポリマー成分。電解質の電気化学ウィンドウを広げます。 市販の電解液の3.92Vに比べ5....
    続きを読む
  • Na3Zr2Si2PO12 Naイオン電池用セラミック電解質
    Sep 11 , 2023
    Na3Zr2Si2PO12セラミック Naイオン電池用電解質:スプレードライ法による調製とその方法 プロパティ 著者李文凱、趙寧、BI志傑、郭祥新。 Na3Zr2Si2PO12 Naイオン電池用セラミック電解質: を使用した調製 噴霧乾燥法とその性質 無機材料ジャーナル、2022、37(2): 189-196 DOI:10.15541/jim20210486 要約 Naイオン電池は現在、可燃性および爆発性の有機物を使用しています。 電解質、高性能ナトリウムイオン固体の開発が急務となっている より安全で実用的な用途を実現する電解液。 Na3Zr2Si2PO12 はその 1 つです。 広い電気化学ウィンドウを備えた最も有望な固体ナトリウム電解質、 高い機械的強度、優れた空気安定性、および高いイオン伝導性。 しかし、セラミック粒子とバインダーが不均一に混合されるため、 グリーンボディ内の細孔が非...
    続きを読む
  • 全固体電池: 整備士の重要な役割
    Sep 27 , 2023
    セルギー・カルナウスら。全固体電池: 整備士の重要な役割。科学。 381、1300 (2023). リチウム金属アノードを備えた固体電池には、より高いエネルギー密度、より長い寿命、より広い動作温度、および安全性の向上の可能性があります。研究の大部分は、材料と界面の輸送速度論と電気化学的安定性の改善に焦点を当てていますが、材料力学の調査を必要とする重大な課題もあります。固体-固体界面を備えた電池では、機械的接触、および固体電池の動作中の応力の発生が、これらの界面での安定した電荷移動を維持するための電気化学的安定性と同じくらい重要になります。このレビューでは、通常および長期のバッテリー サイクルから生じるストレスと歪み、およびストレス軽減のための関連メカニズムに焦点を当てます。その一部はバッテリーの故障につながります。 背景 全固体電池 (SSB) には、日常の電話や電気自動車に使用されている...
    続きを読む
  • 硫化物系全固体リチウム電池用負極の最近の進歩
    Oct 08 , 2023
    最近の進捗状況 硫化物系全固体リチウム電池用負極 →パート 1 リチウム金属負極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1.学校 上海交通大学機械工学科、上海 200241、中国 2.上海 伊利新エネルギー技術有限公司、上海 201306、中国 要約 全固体リチウム電池 (ASSLB) はより高いエネルギー密度を示す 現在主流の液体リチウム電池よりも安全性が高い 次世代エネルギー貯蔵デバイスの研究の方向性。と比較して 他の固体電解質、硫化物固体電解質 (SSE) には、 超高イオン伝導率、低硬度、容易な特性 加工性と良好な界面接触は、最も有望な要素の 1 つです。 全固体電池実現への道筋。ただし、いくつかあります。 アノードと SSE の間の界面の問題により、用途が制限されます。 界面副反応、剛性接触不良、リチウムデンドライトなど。これ この...
    続きを読む
  • 硫化物系全固体リチウム電池用負極に関する最近の進歩 — その他の負極
    Oct 25 , 2023
    前回の記事の続き 最近の進捗状況 硫化物系全固体リチウム電池用負極 ââ パート 2 その他 陽極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1.学校 上海交通大学機械工学科、上海、200241、中国 2.上海 伊利新エネルギー技術有限公司、上海 201306、中国 リチウム合金負極 界面副反応が激しいため、 純粋なリチウムをそのまま硫化物固体電解質に利用することは困難です。 短期的には、リチウム合金材料がより魅力的な選択肢となります。 金属リチウム負極と比較して、リチウム合金負極は性能を向上させることができます。 界面濡れ性、界面副反応の発生を抑制、 固体電解質の化学的および機械的安定性を向上させる 界面を保護し、リチウム樹枝状結晶の成長による短絡を回避します。で 同時に、液体リチウムイオン電池と比較して、合金アノードは 全固体電池のエネルギー...
    続きを読む
  • P2-Nax[Mg0.33Mn0.67]O2ナトリウムイオン電池正極材料の電気化学活性
    Nov 08 , 2023
    正極の電気化学活性 P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池の材質 著者: ZHANG Xiaojun1、LI Jiale1,2、QIU Wujie2,3、YANG Miaosen1、LIU Jianjun2,3,4 1.バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2.中国科学院上海陶磁器研究所、高性能セラミックスおよび超微細微細構造の国家重点実験室、上海 200050、中国 3.中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4.中国科学院大学杭州高等研究院化学材料科学院、杭州市 310024、中国 要約 低コストと幅広い原材料の流通という利点を活かし、 ナトリウムイオン電池は、次のような用途に最適な代替材料と考えられています。 リチウムイオン電池の正極材。 P2 相では ...
    続きを読む
  • リチウム硫黄電池におけるホウ素系材料の最近の進歩
    Nov 22 , 2023
    最近の進捗状況 リチウム硫黄電池におけるホウ素系材料 著者: リー・ガオラン、リー 紅陽、曾海波 MIIT主要研究室 ナノオプトエレクトロニクス研究所 先端ディスプレイ材料・デバイス 南京大学材料科学工学部材料 科学技術、南京 210094 要約 リチウム硫黄(Li-S)電池は再生可能 次世代の電気化学エネルギーの開発における重要な役割 高エネルギー密度と低コストによる蓄電技術。しかし、彼らの 実用化は依然として反応速度の遅さと低さによって妨げられています。 変換反応の可逆性が比較的低いことに寄与します。 実用容量、クーロン非効率、およびサイクル不安定性。この中で 導電性、吸着性、触媒性の機能を合理的に設計 材料は硫黄を安定化および促進するための重要な経路を示します 電気化学。独特の原子および電子構造の恩恵を受ける ホウ素、ホウ素ベースの材料は、多様かつ調整可能な物理的特性を示します。 化...
    続きを読む
  • LaNi0.6Fe0.4O3 SOFC カソード材料
    Dec 01 , 2023
    LaNi0.6Fe0.4O3 カソード接点材質: 導電性 特性操作と SOFC の電気化学的性能に対するその影響 ZHANG Kun、WANG Yu、ZHU Tenglong、SUN Kaihua、 ハン・ミンファン、チョン・チン。 LaNi0.6Fe0.4O3 カソード 接点材質: 導電特性の操作とその効果 SOFC の電気化学的性能に関する[J]。無機材料ジャーナル、DOI: 10.15541/jim20230353. カソードとインターコネクタの接点の模式図 インターフェース フラットの組み立て工程中 固体酸化物型燃料電池 (SOFC) スタック、セラミック間の直接接触 カソードと金属コネクタが劣化しており、ストレスが高くなります。簡単に 大きな界面接触抵抗が発生し、それが影響を及ぼします。 スタックのパフォーマンスと安定性。カソードコンタクト層は通常、 界面の接触を改善するためにカ...
    続きを読む
  • NCM、LFP、LFMPの性能比較
    Dec 18 , 2023
    1.リン酸鉄マンガンリチウムとは リチウム リン酸鉄マンガンは、リチウムをドープして形成された新しい正極材料です 一定量のマンガン元素を含むリン酸鉄。イオン以来 マンガン元素と鉄元素の半径と一部の化学的性質は類似しています。 リン酸マンガン鉄リチウムとリン酸鉄リチウムは類似しています。 構造があり、両方ともオリビン構造を持っています。エネルギーの観点から見ると 密度、リン酸鉄マンガンリチウムは鉄リチウムより優れています リン酸塩であるため、「鉄リチウムの改良版」とみなされます。 リン酸塩」。 リチウム リン酸鉄マンガンは、エネルギー密度のボトルネックを突破することができます。 リン酸鉄リチウム。現在、鉄リチウムの最大エネルギー密度は、 リン酸塩は161~164Wh/kg程度で安定しています。リン酸塩系材料として より高いエネルギー密度を備えたリン酸鉄マンガンリチウムの応用 リン酸鉄リチウム...
    続きを読む
  • 全固体薄膜リチウム電池用アモルファスLiSiON薄膜電解質
    Jan 04 , 2024
    著者: XIA Qiuying、SUN Shuo、ZAN Feng、XU Jing、XIA Hui 材料学部 南京科学技術大学理工学部、南京 210094、中国 要約 全固体薄膜リチウム電池(TFLB)が理想とされる マイクロ電子デバイスの電源。ただし、イオン性が比較的低いため、 アモルファス固体電解質の導電率により、性能の向上が制限される TFLB の電気化学的性能。この研究では、アモルファスリチウムシリコン 酸窒化物 (LiSiON) 薄膜は、マグネトロン スパッタリングによって次のように調製されます。 TFLB用固体電解質。最適化された成膜条件により、 LiSiON 薄膜は室内で 6.3×10-6 Sâcm-1 の高いイオン伝導率を示します 5 Vを超える幅広い温度範囲と広い電圧範囲に対応しており、薄膜として適しています。 TFLB用電解液。 MoO3/LiSiON/Li TFLB ...
    続きを読む
先頭ページ 1 2 3 4 5 6 最後のページ
[  の合計  6  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社