-
前回の記事からの続きです 硫化物系全固体リチウム電池負極の最近の進歩 —— パート 2 その他の陽極 著者: JIA Linan、DU Yibo、GUO Bangjun、ZHANG Xi 1. 上海交通大学機械工学部、上海 200241、中国 2. 上海宜利新能源科技有限公司 、上海201306、中国 リチウム合金負極 界面副反応が激しいため、純粋なリチウムを短期的に硫化物固体電解質に直接使用することは困難であるため、リチウム合金材料はより魅力的な選択肢となります。金属リチウムアノードと比較して、リチウム合金アノードは界面の濡れ性を改善し、界面副反応の発生を抑制し、固体電解質界面の化学的および機械的安定性を高め、リチウムデンドライトの成長によって引き起こされる短絡を回避できます。同時に、液体リチウムイオン電池と比較して、合金負極は全固体電池においてより高いエネルギー密度とより優...
続きを読む
-
P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池正極材料の電気化学的活性 著者: ZHANG Xiaojun 1、LI Jiale 1,2、QIU Wujie 2,3、YANG Miaosen 1、LIU Jianjun 2,3,4 1. バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2. 高性能セラミックスおよび超微細微細構造の国家重点研究所、中国科学院、上海陶磁器研究所、上海200050、中国 3. 中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4. 中国科学院大学杭州高等研究所化学材料科学部、杭州310024、中国 抽象的な ナトリウムイオン電池は、低コストで原材料が広く流通しているという利点があるため、リチウムイオン電池の正極材料の最良の代替材料と考えられています。層状構造を...
続きを読む
-
高容量の F ドープ炭素被覆ナノ Si アノード: ガス状フッ素化による調製とリチウム貯蔵用の性能 著者: 蘇南、邱潔山、王志宇。高容量の F ドープ カーボン コーティング ナノ Si アノード: ガス状フッ素化による調製とリチウム貯蔵用の性能。無機材料ジャーナル、2023、38(8): 947-953 DOI:10.15541/jim20230009 抽象的な Si アノードは、高エネルギーのリチウムイオン電池の開発において計り知れない可能性を秘めています。しかし、Li の取り込みによる体積の大きな変化による急速な故障は、その応用を妨げます。この研究は、F ドープされた炭素コーティングされたナノ Si アノード材料を生成するための、簡単かつ低毒性のガスフッ素化方法を報告します。高欠陥を含む F ドープ炭素でナノ Si をコーティングすると、Li+ 輸送と安定した LiF リッチ固体電解...
続きを読む
-
近年、Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al、P)、Li6PS5X(X)などの硫化物固体電解質の開発が急速に進んでいます。 =Cl、Br、I)。特に、Li10GeP2S12(LGPS)に代表されるチオLISICON構造硫化物は、室温で液体電解質を超える12mS/cmという極めて高いリチウムイオン伝導度を示し、固体電解質の固有伝導度が不十分であるという欠点を部分的に解決しました。 図1(a)は2.2cm×2.2cmのLi1.5Al0.5Ge1.5(PO4)3を用いた全固体リチウム電池を示しています。これは、ガラスセラミック固体電解質シート、LiFePO4 正極材料、PEO ベースのポリマー修飾層、および金属リチウム負極から組み立てられています。室温で正常に放電し、LEDライトを点灯できます。そのコアコンポーネントの...
続きを読む
-
電池電極のカレンダー加工工程
Mar 06 , 2024
カレンダー加工とは: バッテリー電極のカレンダー加工は、リチウムイオンバッテリーの製造プロセスにおける重要なステップであり、その目的は、設計要件を満たす電極を得ることです。カレンダー加工は必要な工程です。電極を塗布し乾燥させた後、活物質と集電箔との間の剥離強度は低い。このとき、活物質と箔の結合強度を高め、電解液浸漬時や電池使用時の剥離を防ぐためにカレンダー加工が必要です。 カレンダーの目的: カレンダー加工により、電極の表面は滑らかで平坦に保たれます。電極表面のバリがセパレータを突き破ることによる電池の短絡を防止し、電池のエネルギー密度を向上させます。カレンダー加工プロセスは、電極集電体にコーティングされた電極材料を圧縮することができるため、電極の体積が減少し、電池のエネルギー密度が増加し、リチウム電池のサイクル寿命と安全性能が向上します。 1 回目のカレンダー処理と 2 回目のカレン...
続きを読む
-
リチウムイオン電池の負極材料の分類 リチウムイオン電池の主要材料の一つである負極材料は、複数の条件を満たす必要があります。 Li の挿入および脱離反応は酸化還元電位が低いため、リチウムイオン電池の高出力電圧を満たすことができます。 Li の挿入および脱離のプロセス中、電極電位はほとんど変化しないため、電池が安定した動作電圧を得るのに有利です。 リチウムイオン電池の高エネルギー密度を満たす大きな可逆容量。 Li 脱離プロセス中の構造安定性が優れているため、バッテリーのサイクル寿命が長くなります。 環境に優しく、製造時やバッテリーの廃棄時に環境汚染や中毒が発生しません。 準備工程が簡単でコストが安い、資源が豊富で入手しやすい、など。 技術の進歩と産業の高度化に伴い、負極材料の種類も増加しており、新しい材料が常に発見されています。 負極材料の種類は、炭素と非炭素に分類できます。炭素には、天然黒鉛...
続きを読む
-
この記事では、ゼロ電圧の原因を分析します。電極バリによるバッテリーの電圧ゼロ現象に着目。ショートの原因を特定することで、問題を正確に解決し、生産時の電極バリ管理の重要性をより深く理解することを目指しています。 実験 1. 電池の準備 この実験では、正極活物質としてリチウム ニッケル コバルト マンガン酸塩材料 (NCM111) を使用します。正極活物質、SPカーボンブラック、PVDFバインダー、およびNMP溶媒を質量比66:2:2:30で混合してスラリーを作製する。このスラリーを厚さ15μmのカーボンコートアルミ箔上に塗布し、片面の塗布量は270g/m 2 とした。正極を温度(120±3)℃のオーブンに入れて24時間乾燥させた後、電極の圧縮密度が3.28g/cm3になるようにカレンダー加工を行います。負極活物質にはチタン酸リチウム材料Li4Ti5O12を使用しています。負極活物質、SPカー...
続きを読む
-
レーザークリーニングの原理は、エネルギー密度が高く、方向を制御でき、収束力が強いというレーザー光の特性を利用することです。レーザーは、ワークピースベースに付着した油汚れ、錆びスポット、ほこり残留物、コーティング、酸化層またはフィルム層などの汚染物質と相互作用し、瞬間的な熱膨張、溶融、ガス揮発などの形でワークピースベースから分離されます。レーザー洗浄プロセス全体は複雑であり、レーザー蒸発分解、レーザー切断、汚染粒子の熱膨張、基板表面の振動、汚染物質の除去に大別できます。現在、レーザーアブレーション洗浄法、液膜支援レーザー洗浄法、レーザー衝撃波洗浄法などがあり、金属、合金、ガラス、各種複合材料などの通常の基板表面を安定かつ効果的に洗浄することができます。 項目を比較する レーザークリーニング 化学洗浄 機械研削 洗浄方法 非接触レーザー 接触式化学洗浄剤 接触式メカニカル、サンドペーパー ダメ...
続きを読む
-
電池生産の重要な設備である電池の校正精度 リチウム電池コーティング機のコーティングヘッドは、バッテリーに直接影響を与えます。 コーティングの品質に影響を与えるため、バッテリーの性能と寿命に影響します。これ この記事では、リチウム電池のコーティングの校正方法を分析します。 機械のダイヘッドを基本キャリブレーション、位置決めの 3 つのレベルから詳細に説明します。 特定のデータと組み合わせたキャリブレーションと精密キャリブレーション。 基本的な校正 基本的なキャリブレーションは、コーターを開始する前の重要なステップです。それ コーターの調整によりコーターの正常な動作を確保することを目的としています。 速度、圧力、流量などのパラメータを事前に決定します。 考えられる問題 ステップとデータ ダイヘッドの取り付け: コーティングヘッドをコーティング機に置き、 しっかりと取り付けられていることを確認し...
続きを読む