-
最初は確認して焼くことです 電池素材 。 一般的に、 電池導電剤 120で焼く必要があります ℃ 8時間 時間 ザ・ PVDF パウダー すべき 80で焼く ℃ 8時間 時間 ザ・ カソード活物質 (LFP、NCMなど) 着信の状態とプロセスによって異なります材料 かどうか 焼いて 乾燥させる必要があります。 乾燥後、 (ウェット プロセス) 混合 PVDF パウダー そして NMP 溶媒 バインダーを作るために (接着剤) 電極用 PVDF の品質バインダー (接着剤) バッテリー の内部抵抗と電気的性能にとって非常に重要です。バインダーの混合に影響を与える要因には、温度と攪拌速度が含まれます。バインダーの温度が高くなると黄変し、 接着に影響します。 混合速度が速すぎて、バインダーが壊れやすい 比速度は分散液のサイズによって異なります プレート 一般に、分散プレートの直線速度は 10-1...
続きを読む
-
バッテリーアノード材料の準備
Dec 16 , 2020
リチウム電池のアノードは、 アノード活物質 、 導電剤 、 電池 バインダー そして 分散剤 。 従来型 アノード電極システムは水混合プロセスです ( 溶媒は脱イオン水です)ので、入ってくる材料は 乾燥を必要としません。 これ プロセス 必要なもの: 脱イオン水の導電率 ≤1us / cm。 ワークショップの温度≤40℃、湿度 :≤25%RH。 材料を確認した後、接着剤溶液を準備します ( CMC パウダー と水 組成) 最初。 を注ぐ グラファイトパウダー そして 導電剤 ( カーボンブラック 、 CNT 、 グラフェン 、など。 ) に インクルード バッテリースラリーミックス erドライ用 ミキシング 掃除機をかけないことをお勧めします すべきではありません ポンピングされます。 循環水を開始します ( 粒子の押し出し摩擦により深刻な熱が発生します 乾燥中 混合中) 15の低速で 〜...
続きを読む
-
ザ・ カソード電極コーティング それは カソードスラリーカソード集電体アルミホイルへの押し出しコーティングまたはスプレーの場合、片面の密度は20〜40 mg / cm2です。 従来のコーティングオーブン温度 4-8 セクション (または 以上)、ベーキング温度の各セクション 95℃ 〜 120℃ 実際の調整の必要性に応じて、ベーキングクラックの横方向のクラックと溶剤現象を回避するために、転写コーティングローラーの速度比は1.1-1.2であり、ギャップ位置は すべき 20-30um で薄くなります (回避 トレーリングによる極耳の過度の圧縮、およびバッテリーサイクルでのリチウム抽出)、およびコーティング水 すべき ≤2000-3000ppm (特定の 材料と プロセスに応じて) カソード電極コーティングワークショップの温度は≤30℃、湿度は ≤25%です。 アノード電極コーティング それは ...
続きを読む
-
乾燥 バッテリーカソード電極 後 バッテリーコーティングプロセス 、ロールする必要があります コーティングされたバッテリー電極 ホイル 中 プロセス 時間 ザ・ 電極圧延プロセス コーティングされた電極を圧縮することです。現在、ホットプレスとコールドプレスの2つのプロセスがあります。 バッテリー電極ローリングプレス 。 バッテリー電極のホットプレス圧縮率は よりも高い コールドプレス、およびリバウンド率は 低いです。 しかし、コールドプレスプロセスは比較的単純で、操作と制御が簡単です。 TOB 新エネルギー 両方を提供できます バッテリー電極ホットプレス機 そして バッテリー電極コールドプレス機 、および提供 カスタマイズされたサービス 要件に応じて 材料 真の密度値 u n それ LFP 3.6 g / m 3 LCO 5.1 g / m 3 LMO 4.3 g / m 3 PVDF 1...
続きを読む
-
バッテリー電極巻線プロセス
Feb 22 , 2021
バッテリー電極巻線は、バッテリー電極巻線機を通るセパレーター、カソードシート、アノードシートです。単一のバッテリー セル。 TOB 新エネルギー 提供することができます バッテリー巻き取り機 18650 の場合 リチウムイオン 円筒形セル精密巻線 18650 生産ライン 。 バッテリーの原理 巻線は、アノードを使用してカソードを覆い、次に カソードとアノードを分離するためのバッテリーセパレーター フォイル。 いつ 巻線、私たちは特別に支払う必要があります 巻き張力とフォイルへの注意 位置合わせ もし 巻線張力が小さいと、内部抵抗とシェルの侵入率に影響します 速度 そして 緊張しすぎるのは簡単です短絡または電極の破損を引き起こす リスク アラインメントとは、アノード、カソード、バッテリーセパレーターの相互の位置合わせを指します。アノード幅59.5mm、カソード58mm、バッテリーセパレーター...
続きを読む
-
リチウム電池の製造プロセスには、主に電池のカソードとアノードのスラリー混合、正と負が含まれます 電極コーティング 、ローラープレス、電極切断、バッテリー電極製造およびダイ切断、それぞれミキサー、コーティング機、ローラープレス、スリッティング機、電極ノッチング機および電極ダイ切断機に対応する. リチウム電池の前のプロセス- バッテリーコーティング機 、プロセスに関与する単一の機器が複雑であるため、製品の歩留まりを制御することは困難です.前のプロセス制御が適切でないと、プロセスはある程度影響を受け、最終的には材料使用率、製品合格率につながります.一貫性やその他の側面が低下します.したがって、均質化混合、コーティング、ローラープレスおよびその他のコアプロセスも、パワーバッテリー企業の生産ラインにおける最優先事項と見なされています.電池の電極コーティングの主な目的は、リチウム電池のアノードとカソー...
続きを読む
-
電極コーティングと乾燥後,、活物質と集電体フォイルの間の剥離強度は非常に低く,、活物質とフォイルの結合強度を高めるために圧延する必要があります,。電解液への浸漬中の剥離とバッテリーの使用.同時に,電極のローラープレスはceの体積を圧縮する可能性があります ll,セルのエネルギー密度を改善します,活物質間の多孔性を低減します,電極内の導電剤とバインダー,バッテリーの抵抗を低減します,バッテリー! 電極の圧縮密度は、圧縮密度が増加する,活物質粒子間の距離が減少する,接触面積が増加するにつれて、特定の範囲,内でバッテリーの電気化学的性能に重要な影響を及ぼします, ,そしてイオン伝導を助長する経路とブリッジの数は巨視的側面で増加します,,バッテリーの内部抵抗は減少します.しかし,電極の圧縮密度が高すぎる場合,活物質粒子間の接触が近すぎて,、電子伝導性が増加します.が、,リチウムイオンチャネルの減少...
続きを読む
-
水性ナトリウムイオン電池用のプルシアンブルーカソード材料: 調製と電気化学的性能 著者 :李勇。水性ナトリウムイオン電池用プルシアン ブルー陰極材料: 準備と電気化学的性能。ジャーナル オブ 無機材料[J]、2019、34(4): 365-372 doi:10.15541/jim20180272 TOB ニューエナジー は リチウム イオン 電池 、 ナトリウムイオン電池 など プルシアンブルー (PB) は一種の有機金属骨格複合体であり、水性ナトリウム イオン電池の正極材料として幅広い用途の見通しを示しています。この研究では、PB複合材料は単一ソース法で調製されました。さらに、塩酸の反応温度、時間、濃度が PB の形態と電気化学的性能に及ぼす影響を体系的に調査しました。結果は、PBの結晶化度と電気化学的安定性が反応温度を上げることによって改善されることを示した。正極材として80℃で合成し...
続きを読む
-
超高ニッケルLiNi0.91Co0.06Al0.03O2@Ca3(PO4)2カソード材料の強化されたリチウム貯蔵安定性メカニズム 著者: 朱和真、王玄鵬、韓康、楊陳、万瑞哲、呉立明、麻利強。超高ニッケル LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 カソード材料の強化されたリチウム貯蔵安定性メカニズム。無機材料ジャーナル、2022 年、37(9): 1030-1036 DOI:10.15541/jim20210769 新しいリチウムイオン電池のカソードとしての超高ニッケル材料は、その高い比容量、高電圧、および低コストのために多くの注目を集めています。しかし、サイクル中に生成されたマイクロクラック、機械的粉砕、および不可逆的な相転移により、サイクル安定性が低下します。ここでは、Ca3(PO4)2 でコーティングされた一連の超高ニッケル LiNi0.91Co0.06Al0....
続きを読む
-
リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク 著者:ジン・ガオヤオ、ヘ・ハイチュアン、ウー・ジエ、チャン・メンユアン、リー・ヤージュアン、リウ・ユニアン。リチウム硫黄電池のカソードの硫黄ホストとしてのコバルトドープ中空炭素フレームワーク。無機材料ジャーナル[J]、2021、36(2): 203-209 DOI:10.15541/jim20200161 TOBニューエナジー は、リチウム イオン電池、 ナトリウムイオン電池、 硫黄電池、全 固体 電池 さまざまな 電池材料 を提供し ています 。 お 見積り はお問い合わせください。 リチウム硫黄 (Li-S) 電池には硫黄元素が含まれており、天然に豊富に存在し、低コストで、比容量が大きい (1672 mAh∙g-1) という利点があります。しかし、硫黄元素の電気伝導率が低い (5×10-30 S·cm-...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質の Fe4[Fe(CN)6]3 (HQ-FeHCF) ナノキューブは、単純な熱水法によって合成されました。その構造、形態および含水量が特徴付けられます。Fe4[Fe(CN)6]3 は正立方体の形状を示し、均一なサイズは約 100 mm です。面心立方相に属する 500 nm。Fe4[Fe(CN)6]3 は、1C、2C、5C、10C、20C、30C、および 40C レートで、それぞれ 124、118...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 パート 2: Fe4[Fe(CN)6]3 ナノキューブの構造キャラクタリゼーション 図 1(a) は、HQ-FeHCF と LQ-FeHCF の XRD パターンを示しています。図から、HQ-FeHCF のすべての回折ピークが JCPDS NO. と一致していることがわかります。01-0239 カード。合成された HQ-FeHCF は、fm-3m 空間点群 a=b=c=0.51 nm、α=β=γ=90°...
続きを読む
-
高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験 最初に、Na-H2O-PEG 電解質中の HQ-FeHCF および LQ-FeHCF の電気化学的性能を、3 電極システムを使用してテストしました。図 4(a) は、1 mV s-1 のスキャン レートでの Na-H2O-PEG 電解液中の HQ-FeHCF および LQ-FeHCF のサイクリック ボルタンメトリー曲線を示しています...
続きを読む
-
リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、何・ハイチュアン、ウー・ジエ、張夢源、李雅娟、劉友年 中南大学化学・化学工学部、マイクロ&ナノ材料界面科学の湖南省重点実験室、中国長沙市410083 要約 リチウム硫黄電池は、エネルギー貯蔵用のコスト効率が高く、エネルギー密度の高い次世代システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、酸化還元反応速度の遅さにより、深刻な容量低下とレート性能の低下が生じます。ここでは、コバルトナノ粒子が埋め込まれたクエン酸ナトリウム由来の三次元中空炭素骨格が、硫黄陰極のホストとして設計されています。導入されたコバルトナノ粒子は、多硫化物を効果的に吸着し、変換反応の速度論を強化し、サイクル性能とレート性能をさらに向上させることができます。得られた正極は、0.5C で 12...
続きを読む
-
電池スラリーは粘度の高い固液です。 二相サスペンション システムを使用し、このシステムの安定性を評価するには、 最初のステップは、その組成と機能特性を研究することです。ほとんどの リチウム産業では、混合して形成される混合物である石油ベースのスラリーが使用されます。 活物質、結着剤、導電剤、溶剤等を分散させる。 一定の比率と順序。 カソードアクティブ 材料 メインとして カソードスラリー中の電気化学的活性成分、カソード活物質 電圧、エネルギー密度、その他の基本特性を決定します。 バッテリーであり、スラリーシステムの核心です。粒子サイズ 分布、比表面積、pHまたは残留アルカリ値など 活物質の特性はスラリーの安定性に影響します。 粒子 サイズ分布: 粒子 活物質のサイズと粒度分布は重要です スラリー製造プロセスにおける重要な要素。活性物質の粒子が小さいほど、 材料の粘度が高いほど、連続相の粘度は...
続きを読む
-
バッテリー電極コーティングは重要です バッテリーの製造プロセスは性能に影響を与えるため、 効率と最終製品の品質。電極コーティングには以下が含まれます。 金属箔や電流などの基板上にスラリーを塗布すること コレクタを使用して、活性材料の均一で薄い層を作成します。 エネルギーを貯蔵および放出できるコバルト酸リチウム、グラファイト、またはシリコン 充電および放電サイクル中。電極コーティングは次の方法で実現できます。 さまざまな方法があり、それぞれに独自の原理、特徴、利点があり、 予防。この記事は、最も一般的なものの概要を提供することを目的としています。 電池製造に使用される電極コーティング方法。 ドクターブレードコーティング ドクターブレードコーティングは定評があります ドクターと呼ばれる金属製の刃を使用する広く使用されている方法 ブレードを使用して余分なスラリーを削り取り、滑らかで均一な膜を作成...
続きを読む
-
電池正極スラリーの調製方法
Jun 02 , 2023
電池正極スラリーの調製方法 湿式電極作製工程 カソード電極としてダブルプラネタリーミキサーを使用したスラリー調製装置。まず、ポリフッ化ビニリデン(PVDF)接着剤を準備します。通常の混合タンクを使用して、まず溶剤NMP(N-メチルピロリドン)を一定量注ぎ、設計された固形分含有量に従ってバインダーPVDF粉末を加え、4〜6時間撹拌してPVDF接着剤を得る。 PVDF接着剤は一定の粘度を持った無色透明の液体で、固形分含有量は必要に応じて5%~10%の間で制御できます。調製した接着剤溶液は通常、撹拌プロセス中に発生する気泡を除去するために真空引きし、12 時間以上放置する必要があります。次に、密閉されたパイプラインを通って定量ポンプを介して一定量がスラリー調製ミキサーに送られます。導電剤SPを加え、ミキサーを回転させながら同時に回転させます。公転速度を(25±5)r/min、自転速度を(500±...
続きを読む
-
リチウムイオン電池は広く使われています。 高いエネルギー密度と長いサイクル寿命により、さまざまな分野で使用されています。 環境への優しさ。アノード電極スラリーが鍵の一つ 性能と安全性に影響を与えるリチウムイオン電池の成分 バッテリーの。したがって、準備を理解することが重要です アノード電極スラリーの製造方法と注意事項 陽極の作製工程 電極スラリーは原料調製、 混合、コーティング、乾燥。 1. 原料の準備 生の アノード電極スラリーの材料には主に活物質が含まれており、 導電剤、バインダー、溶剤。活物質がメインです グラファイト、シリコン、バッテリー内のリチウムイオンと電子の供給源。 錫およびその合金または複合物。導電剤は改善のために使用されます。 スラリーとカーボンなどの電極の導電率 黒、グラフェン、カーボンナノチューブ。バインダーは活性物質を結合するために使用されます。 材料と導電剤を一緒...
続きを読む
-
リチウムイオン電池は広く使われています。 電気自動車、家電、エネルギー貯蔵などのさまざまな分野 そして航空宇宙。リチウムイオン電池の性能と品質は、 電極材料とその加工方法。重要なプロセスの 1 つ 電極の製造では、カレンダー加工が行われます。これは、電極を圧縮することです。 電極スラリーは、一対のローラーによって集電箔上に塗布されます。 カレンダー加工により、密度、導電性、接着性、機械的特性が向上します。 電極の強度を向上させるだけでなく、厚さと気孔率を低減します。 ただし、カレンダー加工にはひび割れや層間剥離などの欠点もあります。 ストレスの蓄積と能力の低下。したがって、最適化することが重要です カレンダー加工パラメータを調整し、さまざまな用途に適した装置を選択します。 電極の種類と仕様 電池電極カレンダー加工機(ローリングプレス機)というデバイスです 反対方向に回転して適用する 2 つ...
続きを読む
-
Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料 孔国強、レン・ミンツェ、周振栄、夏 チー、シェン・シャオファン。 Sb ドープ O3 タイプ Na0.9Ni0.5Mn0.3Ti0.2O2 カソード Naイオン電池用素材[J]。無機材料ジャーナル、2023、38(6): 656-662. 要約 サイクル安定性と比容量 ナトリウムイオン電池の正極材料は、 その幅広い用途。具体的な導入戦略に基づき、 ヘテロ元素を使用して構造安定性と比容量を最適化します。 正極材料、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、 0.06)を簡単な固相反応法で調製したSbの効果 Na0.9Ni0.5Mn0.3Ti0.2O2のナトリウム貯蔵特性に及ぼすドーピング量 正極材料を調査した。特性評価の結果は、 遷移金属中の酸...
続きを読む