-
近年、Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al、P)、Li6PS5X(X)などの硫化物固体電解質の開発が急速に進んでいます。 =Cl、Br、I)。特に、Li10GeP2S12(LGPS)に代表されるチオLISICON構造硫化物は、室温で液体電解質を超える12mS/cmという極めて高いリチウムイオン伝導度を示し、固体電解質の固有伝導度が不十分であるという欠点を部分的に解決しました。 図1(a)は2.2cm×2.2cmのLi1.5Al0.5Ge1.5(PO4)3を用いた全固体リチウム電池を示しています。これは、ガラスセラミック固体電解質シート、LiFePO4 正極材料、PEO ベースのポリマー修飾層、および金属リチウム負極から組み立てられています。室温で正常に放電し、LEDライトを点灯できます。そのコアコンポーネントの...
続きを読む
-
円筒形セル、パウチセル、角形セルの 3 つのシェルタイプの中で、角形セルが最も高い汎用性と市場シェアを持っています。しかし、電池を分解して内部プロセス設計を検討する場合、ショートさせず、内部構造に影響を与えず、安全性を確保する必要があります。どのように分解すればよいでしょうか? 1。目的 安全、正確かつ効果的な分解仕様を確保するために、単一角柱セル サンプルの分解をガイドします。 2. 分解方法と要件 2.1 環境の解体。 バッテリーセルの分解は、次の条件下で実行する必要があります。 温度:25℃±5℃ 相対湿度: ≤30%RH 気圧:86KPa~106Kpa 2.2 解体現場の要件 a.解体現場には、消火設備、警報設備、緊急設備などの安全対策を講じる必要があります。 b. 解体現場は強化され、漏れのない環境保護設備が備えられている必要があります。 c. 解体現場は乾燥した状態に保つ必要が...
続きを読む
-
電池電極のカレンダー加工工程
Mar 06 , 2024
カレンダー加工とは: バッテリー電極のカレンダー加工は、リチウムイオンバッテリーの製造プロセスにおける重要なステップであり、その目的は、設計要件を満たす電極を得ることです。カレンダー加工は必要な工程です。電極を塗布し乾燥させた後、活物質と集電箔との間の剥離強度は低い。このとき、活物質と箔の結合強度を高め、電解液浸漬時や電池使用時の剥離を防ぐためにカレンダー加工が必要です。 カレンダーの目的: カレンダー加工により、電極の表面は滑らかで平坦に保たれます。電極表面のバリがセパレータを突き破ることによる電池の短絡を防止し、電池のエネルギー密度を向上させます。カレンダー加工プロセスは、電極集電体にコーティングされた電極材料を圧縮することができるため、電極の体積が減少し、電池のエネルギー密度が増加し、リチウム電池のサイクル寿命と安全性能が向上します。 1 回目のカレンダー処理と 2 回目のカレン...
続きを読む
-
全固体電池用固体電解質4種類
Mar 18 , 2024
全固体電池が業界のトレンドになっているのはなぜですか? 高いセキュリティ: 液体電池の安全性の問題は常に批判されてきました。電解液は高温や強い衝撃を受けると容易に引火します。高電流下では、リチウム樹枝状結晶がセパレータを突き破って短絡を引き起こすこともあります。場合によっては、電解質が高温で副反応を起こしたり、分解したりすることがあります。液体電解質の熱安定性は 100°C までしか維持できませんが、酸化物固体電解質は 800°C に達し、硫化物やハロゲン化物は 400°C に達することもあります。固体酸化物は液体よりも安定しており、固体であるため耐衝撃性は液体よりもはるかに高くなります。したがって、全固体電池は人々の安全に対するニーズを満たすことができます。 高いエネルギー密度: 現在のところ、固体電池は液体電池を超えるエネルギー密度を達成していませんが、理論的には固体電池は非常に高いエ...
続きを読む
-
角形セルでも円筒形セルでも、溶接は電池製造における重要なプロセスの 1 つです。リチウム電池の生産ラインでは、溶接プロセスの生産セクションは主にセルの組み立てとパックラインのセクションに集中しています。以下の図を参照してください。 溶接工程の詳細を簡単に説明します 1. 安全ベント溶接 圧力リリーフバルブとしても知られる安全ベントは、バッテリーの上部カバーにある薄肉のバルブ本体です。バッテリーの内圧が規定値を超えると、安全弁が破裂して圧力を開放し、バッテリーの破裂を防ぎます。安全ベントは独創的な構造になっています。通常、レーザー溶接を使用して、特定の形状の 2 枚のアルミニウム金属シートを固定します。電池の内圧が一定値まで上昇すると、アルミシートが設計上の溝位置から破断し、電池のさらなる膨張や爆発を防ぎます。したがって、このプロセスにはレーザー溶接技術に対する非常に厳しい要件が求められます...
続きを読む
-
リチウムイオン電池の負極材料の分類 リチウムイオン電池の主要材料の一つである負極材料は、複数の条件を満たす必要があります。 Li の挿入および脱離反応は酸化還元電位が低いため、リチウムイオン電池の高出力電圧を満たすことができます。 Li の挿入および脱離のプロセス中、電極電位はほとんど変化しないため、電池が安定した動作電圧を得るのに有利です。 リチウムイオン電池の高エネルギー密度を満たす大きな可逆容量。 Li 脱離プロセス中の構造安定性が優れているため、バッテリーのサイクル寿命が長くなります。 環境に優しく、製造時やバッテリーの廃棄時に環境汚染や中毒が発生しません。 準備工程が簡単でコストが安い、資源が豊富で入手しやすい、など。 技術の進歩と産業の高度化に伴い、負極材料の種類も増加しており、新しい材料が常に発見されています。 負極材料の種類は、炭素と非炭素に分類できます。炭素には、天然黒鉛...
続きを読む
-
この記事では、ゼロ電圧の原因を分析します。電極バリによるバッテリーの電圧ゼロ現象に着目。ショートの原因を特定することで、問題を正確に解決し、生産時の電極バリ管理の重要性をより深く理解することを目指しています。 実験 1. 電池の準備 この実験では、正極活物質としてリチウム ニッケル コバルト マンガン酸塩材料 (NCM111) を使用します。正極活物質、SPカーボンブラック、PVDFバインダー、およびNMP溶媒を質量比66:2:2:30で混合してスラリーを作製する。このスラリーを厚さ15μmのカーボンコートアルミ箔上に塗布し、片面の塗布量は270g/m 2 とした。正極を温度(120±3)℃のオーブンに入れて24時間乾燥させた後、電極の圧縮密度が3.28g/cm3になるようにカレンダー加工を行います。負極活物質にはチタン酸リチウム材料Li4Ti5O12を使用しています。負極活物質、SPカー...
続きを読む
-
レーザークリーニングの原理は、エネルギー密度が高く、方向を制御でき、収束力が強いというレーザー光の特性を利用することです。レーザーは、ワークピースベースに付着した油汚れ、錆びスポット、ほこり残留物、コーティング、酸化層またはフィルム層などの汚染物質と相互作用し、瞬間的な熱膨張、溶融、ガス揮発などの形でワークピースベースから分離されます。レーザー洗浄プロセス全体は複雑であり、レーザー蒸発分解、レーザー切断、汚染粒子の熱膨張、基板表面の振動、汚染物質の除去に大別できます。現在、レーザーアブレーション洗浄法、液膜支援レーザー洗浄法、レーザー衝撃波洗浄法などがあり、金属、合金、ガラス、各種複合材料などの通常の基板表面を安定かつ効果的に洗浄することができます。 項目を比較する レーザークリーニング 化学洗浄 機械研削 洗浄方法 非接触レーザー 接触式化学洗浄剤 接触式メカニカル、サンドペーパー ダメ...
続きを読む
-
リチウムイオン電池の巻き取り工程は、巻き取り機の巻き針機構を通して、正極シート、負極シート、セパレータを一緒に巻き取る工程です。隣接する正極シートと負極シートは、短絡を防ぐためにセパレータによって隔離されています。巻き取った後、ゼリーロールは広がるのを防ぐために終端テープで固定され、次の工程に流れます。この工程で最も重要なことは、正極と負極の間に物理的な接触短絡がないこと、および負極シートが水平方向と垂直方向の両方で正極シートを完全に覆うことができることを確認することです。大量の実験データから、ゼリーロールの品質が最終完成電池の電気化学性能と安全性能に大きな影響を与えることがわかります。これに基づいて、リチウムイオン電池の巻き取り工程におけるいくつかの重要な焦点と注意事項を整理し、「リチウムイオン電池巻き取り工程ガイド」を作成しました。巻き取り工程での誤った操作を可能な限り回避し、品質要件...
続きを読む
-
面密度(mg/cm 2):面密度とは単位面積あたりの質量のことで、この場合は(体積を無視した領域の単位面積あたりの質量)となります。 圧縮密度(g/cm 3):圧縮密度は単位体積中に含まれる質量を示し、物質自体の特性と大きく関係します。 厚さ:素材と箔の合計の厚さは、一般的にミクロン(μm)で表されます。 面密度(g/cm 3)= 圧縮密度(mg/cm 2)/厚さ(μm) リチウムイオン電池の面密度設計のポイント: 一般的に、電池を設計する際には容量を決定します。このとき、材料のグラム容量と活性物質の割合に基づいて、層数と面密度が決定されます。 たとえば、電池の両面密度が 30 mg/cm 2、圧縮密度が 2.5 g/cm 3であると判断すると、その厚さを計算できます。 厚さ = 面密度 / 圧縮密度 =30mg.cm 2 /2.5 g.cm 3 =120 μm (箔厚を除く) 面密度の単...
続きを読む
-
露点とは、水分が凝縮する温度のことです。空気中の水蒸気量が変化しておらず、気圧も一定に保たれている場合、空気が飽和状態まで冷却される温度を露点温度(Td)、または略して露点と呼びます。水蒸気と水が平衡状態に達する温度とも言えます。実際の温度(t)と露点温度(Td)の差は、空気が飽和状態にどれだけ近いかを示します。t>Tdのとき、空気は不飽和、t=Tdのとき、空気は飽和、t<tdのとき、空気は過飽和です。 相対的な大きさ 空気中の水蒸気量 周囲温度 > 露点温度 不飽和 周囲温度 = 露点温度 飽和 周囲温度 < 露点温度 飽和状態 リチウムイオン電池は製造工程中の環境湿度に対して非常に厳しい要件があります。主な理由は、水分制御の喪失や粗大化制御が電解質に重大な悪影響を及ぼすためです。電解質はリチウムイオン電池におけるイオン伝達のキャリアであり、リチウム塩と有機溶媒で構成されてい...
続きを読む
-
バッテリーの充電と放電の曲線
Jul 19 , 2024
バッテリーの充放電プロセスでは、充放電深度が変化すると、電圧も常に変化します。容量を水平座標、電圧を垂直座標として使用すると、バッテリーの電気的性能に関する多くの手がかりを含む単純な充放電曲線が得られます。充放電に関係する時間、容量、SOC、電圧などのバッテリーセルパラメータを座標として描画されたこれらの曲線は、充放電曲線と呼ばれます。ここでは、一般的な充放電曲線をいくつか紹介します。 時間-電流/電圧曲線 ● 定電流 定電流充電と放電中は、電流が一定であり、同時にバッテリー端子電圧の変化が収集され、バッテリーの放電特性を検出するためによく使用されます。放電プロセス中、放電電流は変化せず、バッテリー電圧が低下し、放電電力も低下し続けます。サンプル曲線を下図に示します。 ●定電流・定電圧(充電) 定電流充電と比較すると、定電流定電圧充電は充電終了時に定電圧プロセスがあります。充電終了時に、電...
続きを読む
-
バッテリーの一貫性の重要性
Aug 12 , 2024
蓄電池の不一致とは、主に電池容量、内部抵抗、温度などのパラメータの不一致を指します。私たちの日常の経験では、乾電池2本をプラスとマイナスの方向に接続すると懐中電灯が点灯しますが、不一致は考慮しません。しかし、蓄電池が蓄電システムで大規模に使用されるようになると、状況はそれほど単純ではありません。不一致の電池を直列と並列で使用すると、次のような問題が発生します。 1. 利用可能な容量の損失 エネルギー貯蔵システムでは、バッテリーセル(つまり、バッテリーセル)が直列に接続されてバッテリーパックを形成し、バッテリーパックが直列に接続されてバッテリークラスターを形成します。複数のバッテリークラスターは、同じ DC バスに並列に直接接続されます。セルの不整合による利用可能な容量の損失の原因には、直列の不整合と並列の不整合があります。 (1)バッテリーパックのシリーズ不一致による損失: バッテリーセル...
続きを読む
-
電池生産の重要な設備である電池の校正精度 リチウム電池コーティング機のコーティングヘッドは、バッテリーに直接影響を与えます。 コーティングの品質に影響を与えるため、バッテリーの性能と寿命に影響します。これ この記事では、リチウム電池のコーティングの校正方法を分析します。 機械のダイヘッドを基本キャリブレーション、位置決めの 3 つのレベルから詳細に説明します。 特定のデータと組み合わせたキャリブレーションと精密キャリブレーション。 基本的な校正 基本的なキャリブレーションは、コーターを開始する前の重要なステップです。それ コーターの調整によりコーターの正常な動作を確保することを目的としています。 速度、圧力、流量などのパラメータを事前に決定します。 考えられる問題 ステップとデータ ダイヘッドの取り付け: コーティングヘッドをコーティング機に置き、 しっかりと取り付けられていることを確認し...
続きを読む
-
最近、 化学工学部の張強教授のチーム 清華大学がバルク/表面界面に関する研究結果を発表 リチウムに富むマンガン系正極材料の構造設計 全固体金属リチウム電池。彼らは現場のバルク/表面を提案しました。 界面構造制御戦略を確立し、高速かつ安定なLi+/e-経路を構築し、リチウムリッチの実用化を推進 全固体リチウム電池のマンガンベースの正極材料。 電池は 現代のエネルギー分野で重要な役割を果たし、さまざまな分野で大きな成功を収めています。 ポータブル電子機器、電気自動車、グリッドスケールのエネルギー貯蔵 アプリケーション。ただし、バッテリーのエネルギー密度を向上させる一方で、 バッテリーの安全性が鍵です。需要の急速な成長に伴い、 電池のエネルギー密度を向上させる、従来のリチウムイオン電池 従来の正極材料と有機物に依存する技術 電解質は長期サイクルで技術的なボトルネックに直面しています 安定性、広い...
続きを読む
-
電池の安定性と分散性 スラリーは電極の特性と完成品に重要な影響を与えます。 バッテリー製品。それでは、安定性と分散性をどのように特徴付けるか バッテリーのスラリー? 電池の特性評価方法 スラリーの安定性 1.固形分法 固形分検査法は低コストです そして簡単にテストできる方法。その原理は、スラリーを容器に入れることです。 定期的に同じ場所でサンプルを採取し、テストと分析を行います。 しっかりした内容。固形分の違いから、安定性を判断します。 リチウム電池のスラリーが存在するかどうかを判断できます。 堆積、層化およびその他の現象。 2.粘度法 粘度試験方法はまた、 基本的にはスラリーの安定性を反映します。その原則は、 容器にスラリーを入れて定期的に粘度をテストします。の スラリーの安定性は粘度の変化によって判断できます。 3.安定性 アナライザー の使用 安定性アナライザーはデータと対話できます...
続きを読む