へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

正極スラリーの調製

  • 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験
    Feb 28 , 2023
    高品質の Fe4[Fe(CN)6]3 ナノキューブの調製: 水性ナトリウムイオン電池の正極材料として 王武蓮。高品質 Fe4[Fe(CN)6]3 ナノキューブ: 水性ナトリウムイオン電池のカソード材料としての合成と電気化学的性能。Journal of Inorganic Materials[J]、2019、34(12): 1301-1308 doi:10.15541/jim20190076 高品質 Fe4[Fe(CN)6]3 ナノキューブの電気化学的性能試験 最初に、Na-H2O-PEG 電解質中の HQ-FeHCF および LQ-FeHCF の電気化学的性能を、3 電極システムを使用してテストしました。図 4(a) は、1 mV s-1 のスキャン レートでの Na-H2O-PEG 電解液中の HQ-FeHCF および LQ-FeHCF のサイクリック ボルタンメトリー曲線を示しています...
    続きを読む
  • リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1
    Apr 25 , 2023
    リチウム硫黄電池の正極用硫黄ホストとしてのコバルトドープ中空炭素フレームワーク - パート 1 ジン・ガオヤオ、何・ハイチュアン、ウー・ジエ、張夢源、李雅娟、劉友年 中南大学化学・化学工学部、マイクロ&ナノ材料界面科学の湖南省重点実験室、中国長沙市410083 要約 リチウム硫黄電池は、エネルギー貯蔵用のコスト効率が高く、エネルギー密度の高い次世代システムであると考えられています。しかし、活物質の低い導電率、シャトル効果、酸化還元反応速度の遅さにより、深刻な容量低下とレート性能の低下が生じます。ここでは、コバルトナノ粒子が埋め込まれたクエン酸ナトリウム由来の三次元中空炭素骨格が、硫黄陰極のホストとして設計されています。導入されたコバルトナノ粒子は、多硫化物を効果的に吸着し、変換反応の速度論を強化し、サイクル性能とレート性能をさらに向上させることができます。得られた正極は、0.5C で 12...
    続きを読む
  • 正極電極スラリーの安定性に及ぼす電池原料の影響
    May 12 , 2023
    電池スラリーは粘度の高い固液です。 二相サスペンション システムを使用し、このシステムの安定性を評価するには、 最初のステップは、その組成と機能特性を研究することです。ほとんどの リチウム産業では、混合して形成される混合物である石油ベースのスラリーが使用されます。 活物質、結着剤、導電剤、溶剤等を分散させる。 一定の比率と順序。 カソードアクティブ 材料 メインとして カソードスラリー中の電気化学的活性成分、カソード活物質 電圧、エネルギー密度、その他の基本特性を決定します。 バッテリーであり、スラリーシステムの核心です。粒子サイズ 分布、比表面積、pHまたは残留アルカリ値など 活物質の特性はスラリーの安定性に影響します。 粒子 サイズ分布: 粒子 活物質のサイズと粒度分布は重要です スラリー製造プロセスにおける重要な要素。活性物質の粒子が小さいほど、 材料の粘度が高いほど、連続相の粘度は...
    続きを読む
  • 電池正極スラリーの調製方法
    Jun 02 , 2023
    電池正極スラリーの調製方法 湿式電極作製工程 カソード電極としてダブルプラネタリーミキサーを使用したスラリー調製装置。まず、ポリフッ化ビニリデン(PVDF)接着剤を準備します。通常の混合タンクを使用して、まず溶剤NMP(N-メチルピロリドン)を一定量注ぎ、設計された固形分含有量に従ってバインダーPVDF粉末を加え、4〜6時間撹拌してPVDF接着剤を得る。 PVDF接着剤は一定の粘度を持った無色透明の液体で、固形分含有量は必要に応じて5%~10%の間で制御できます。調製した接着剤溶液は通常、撹拌プロセス中に発生する気泡を除去するために真空引きし、12 時間以上放置する必要があります。次に、密閉されたパイプラインを通って定量ポンプを介して一定量がスラリー調製ミキサーに送られます。導電剤SPを加え、ミキサーを回転させながら同時に回転させます。公転速度を(25±5)r/min、自転速度を(500±...
    続きを読む
  • リチウムイオン電池負極電極スラリーの製造工程
    Jun 19 , 2023
    リチウムイオン電池は広く使われています。 高いエネルギー密度と長いサイクル寿命により、さまざまな分野で使用されています。 環境への優しさ。アノード電極スラリーが鍵の一つ 性能と安全性に影響を与えるリチウムイオン電池の成分 バッテリーの。したがって、準備を理解することが重要です アノード電極スラリーの製造方法と注意事項 陽極の作製工程 電極スラリーは原料調製、 混合、コーティング、乾燥。 1. 原料の準備 生の アノード電極スラリーの材料には主に活物質が含まれており、 導電剤、バインダー、溶剤。活物質がメインです グラファイト、シリコン、バッテリー内のリチウムイオンと電子の供給源。 錫およびその合金または複合物。導電剤は改善のために使用されます。 スラリーとカーボンなどの電極の導電率 黒、グラフェン、カーボンナノチューブ。バインダーは活性物質を結合するために使用されます。 材料と導電剤を一緒...
    続きを読む
  • Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材
    Aug 09 , 2023
    Naイオン電池用SbドープO3系Na0.9Ni0.5Mn0.3Ti0.2O2正極材料 孔国強、レン・ミンツェ、周振栄、夏 チー、シェン・シャオファン。 Sb ドープ O3 タイプ Na0.9Ni0.5Mn0.3Ti0.2O2 カソード Naイオン電池用素材[J]。無機材料ジャーナル、2023、38(6): 656-662. 要約 サイクル安定性と比容量 ナトリウムイオン電池の正極材料は、 その幅広い用途。具体的な導入戦略に基づき、 ヘテロ元素を使用して構造安定性と比容量を最適化します。 正極材料、O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2 (NMTSbx、x=0、0.02、0.04、 0.06)を簡単な固相反応法で調製したSbの効果 Na0.9Ni0.5Mn0.3Ti0.2O2のナトリウム貯蔵特性に及ぼすドーピング量 正極材料を調査した。特性評価の結果は、 遷移金属中の酸...
    続きを読む
  • P2-Nax[Mg0.33Mn0.67]O2ナトリウムイオン電池正極材料の電気化学活性
    Nov 08 , 2023
    正極の電気化学活性 P2-Nax[Mg0.33Mn0.67]O2 ナトリウムイオン電池の材質 著者: ZHANG Xiaojun1、LI Jiale1,2、QIU Wujie2,3、YANG Miaosen1、LIU Jianjun2,3,4 1.バイオマスのクリーン変換と高価値利用のための吉林省科学技術センター、東北電力大学、吉林省132012、中国 2.中国科学院上海陶磁器研究所、高性能セラミックスおよび超微細微細構造の国家重点実験室、上海 200050、中国 3.中国科学院大学材料科学および光電子工学センター、北京 100049、中国 4.中国科学院大学杭州高等研究院化学材料科学院、杭州市 310024、中国 要約 低コストと幅広い原材料の流通という利点を活かし、 ナトリウムイオン電池は、次のような用途に最適な代替材料と考えられています。 リチウムイオン電池の正極材。 P2 相では ...
    続きを読む
  • LaNi0.6Fe0.4O3 SOFC カソード材料
    Dec 01 , 2023
    LaNi0.6Fe0.4O3 カソード接点材質: 導電性 特性操作と SOFC の電気化学的性能に対するその影響 ZHANG Kun、WANG Yu、ZHU Tenglong、SUN Kaihua、 ハン・ミンファン、チョン・チン。 LaNi0.6Fe0.4O3 カソード 接点材質: 導電特性の操作とその効果 SOFC の電気化学的性能に関する[J]。無機材料ジャーナル、DOI: 10.15541/jim20230353. カソードとインターコネクタの接点の模式図 インターフェース フラットの組み立て工程中 固体酸化物型燃料電池 (SOFC) スタック、セラミック間の直接接触 カソードと金属コネクタが劣化しており、ストレスが高くなります。簡単に 大きな界面接触抵抗が発生し、それが影響を及ぼします。 スタックのパフォーマンスと安定性。カソードコンタクト層は通常、 界面の接触を改善するためにカ...
    続きを読む
  • NCM、LFP、LFMPの性能比較
    Dec 18 , 2023
    1.リン酸鉄マンガンリチウムとは リチウム リン酸鉄マンガンは、リチウムをドープして形成された新しい正極材料です 一定量のマンガン元素を含むリン酸鉄。イオン以来 マンガン元素と鉄元素の半径と一部の化学的性質は類似しています。 リン酸マンガン鉄リチウムとリン酸鉄リチウムは類似しています。 構造があり、両方ともオリビン構造を持っています。エネルギーの観点から見ると 密度、リン酸鉄マンガンリチウムは鉄リチウムより優れています リン酸塩であるため、「鉄リチウムの改良版」とみなされます。 リン酸塩」。 リチウム リン酸鉄マンガンは、エネルギー密度のボトルネックを突破することができます。 リン酸鉄リチウム。現在、鉄リチウムの最大エネルギー密度は、 リン酸塩は161~164Wh/kg程度で安定しています。リン酸塩系材料として より高いエネルギー密度を備えたリン酸鉄マンガンリチウムの応用 リン酸鉄リチウム...
    続きを読む
  • 電池電極のカレンダー加工工程
    Mar 06 , 2024
    とは カレンダー加工 バッテリーのカレンダー加工 電極はリチウムイオンの製造プロセスにおける重要なステップです 電池の設計に適した電極を得ることを目的としています。 要件。カレンダー加工は必要な工程です。電極コーティング後 乾燥後、活物質と電流との剥離強度 コレクターフォイルが少なくなっています。現時点では、カレンダー処理を行って、 活物質と箔の間の結合強度により、活物質の損傷を防ぎます。 電解液浸漬や電池使用時に剥がれる。 カレンダー加工の目的: カレンダー加工プロセスは維持されます 電極の表面は滑らかで平らです。バッテリーショートを防ぐことができます 電極表面のバリがセパレータを貫通して発生する回路と、 バッテリーのエネルギー密度が向上します。カレンダー加工によりコンパクト化が可能 電極材料が電極集電体上にコーティングされるため、 電極の体積を減らし、電極のエネルギー密度を増加させます...
    続きを読む
  • バッテリー電極のバリによるショートを検出するにはどうすればよいですか?
    May 09 , 2024
    これ この記事では、ゼロ電圧の原因を分析しています。ゼロという現象に着目 電極バリによるバッテリー電圧の上昇。原因を特定することで、 短絡の問題を正確に解決し、より良いものにすることを目指しています。 製造中に電極バリを制御することの重要性を理解しています。 実験 1.バッテリーの準備 この実験ではリチウムを使用します 正極活物質としてマンガン酸ニッケルコバルト材料 (NCM111) を使用します。ミックス 正極活物質、SP カーボンブラック、PVDF バインダー、および NMP 溶媒 質量比66:2:2:30のスラリーを作製する。スラリーは15μmの厚さでコーティングされます カーボンコートアルミ箔で片面の塗布量は270g/m2です。 正極を温度 (120±3)°C のオーブンに入れて乾燥させます。 24時間かけてカレンダー加工を行い、 電極の圧縮密度は 3.28g/cm3。負極活物質に...
    続きを読む
  • 全固体リチウム電池用リチウムリッチマンガン系正極
    Oct 16 , 2024
    最近、 化学工学部の張強教授のチーム 清華大学がバルク/表面界面に関する研究結果を発表 リチウムに富むマンガン系正極材料の構造設計 全固体金属リチウム電池。彼らは現場のバルク/表面を提案しました。 界面構造制御戦略を確立し、高速かつ安定なLi+/e-経路を構築し、リチウムリッチの実用化を推進 全固体リチウム電池のマンガンベースの正極材料。 電池は 現代のエネルギー分野で重要な役割を果たし、さまざまな分野で大きな成功を収めています。 ポータブル電子機器、電気自動車、グリッドスケールのエネルギー貯蔵 アプリケーション。ただし、バッテリーのエネルギー密度を向上させると同時に、 バッテリーの安全性が鍵です。需要の急速な成長に伴い、 電池のエネルギー密度を向上させる、従来のリチウムイオン電池 従来の正極材料と有機物に依存する技術 電解質は長期サイクルで技術的なボトルネックに直面しています 安定性、広...
    続きを読む
  • バッテリースラリーの安定性と分散をどのように特徴づけるのですか?
    Oct 25 , 2024
    電池の安定性と分散性 スラリーは電極の特性と完成品に重要な影響を与えます。 バッテリー製品。では、電池スラリーの安定性と分散性をどのように特徴付けるのでしょうか? 電池の特性評価方法 スラリーの安定性 1.固形分法 固形分検査法は低コストです そして簡単にテストできる方法。その原理は、スラリーを容器に入れることです。 定期的に同じ場所でサンプルを採取し、テストと分析を行います。 しっかりとした内容。固形分の違いから、安定性を判断します。 リチウム電池のスラリーが存在するかどうかを判断できます。 堆積、層化およびその他の現象。 2.粘度法 粘度試験方法はまた、 基本的にはスラリーの安定性を反映します。その原則は、 容器にスラリーを入れて定期的に粘度をテストします。の スラリーの安定性は粘度の変化によって判断できます。 3.安定性 アナライザー の使用 安定性アナライザーはデータと対話できます...
    続きを読む
  • 水分を最小限に抑えたプルシアンブルー正極を用いた擬似固体Naイオン電池の開発
    Nov 18 , 2024
    王崑鵬 ,1, 劉昭林 2, 林坤生 2, 王志宇 ,1,2 1.中国大連116024、大連理工大学化学工学部ファインケミカル国家重点実験室 2.新材料開発支店、ヴァリアント株式会社、煙台市 265503、中国 要約 リチウムイオン電池と比較して、ナトリウムイオン電池は、低コスト、優れた低温性能、安全性という利点を備えており、コストと信頼性が重視される用途で大きな注目を集めています。高容量で低コストのプルシアンブルー様材料 (PBA) は、Na イオン電池の正極材料として有望です。しかし、その構造内に結晶水が存在すると、バッテリーの性能低下が急速に引き起こされ、その用途を制限する重大なボトルネックとして機能します。この研究では、PBA 正極材料から結晶水を効果的に除去し、340 サイクル後の容量維持率を 73% から 88% に向上させるための容易な熱処理戦略を報告しています。現場分析によ...
    続きを読む
  • LFP バッテリーの性能に対する NMP 濃度の影響
    Dec 09 , 2024
    リン酸鉄リチウム (LiFePO4) 正極 電極材料油性スラリーは通常N-メチルピロリドン(NMP)を使用し、 溶媒としてジメチルスルホキシドやジメチルホルムアミドを使用しているため、次のような問題があります。 溶剤回収の困難さ、大量使用、環境汚染などが挙げられます。 LiFePO4 正極材料の水系スラリーには脱イオン水を使用します。 環境に優しく、低コストであるが、水ベースの溶剤 バインダー正極シートは柔軟性が低い、弱いなどの問題がある 活物質の付着と電気化学的性能の低下。この中で 紙、NMP添加量の異なる正極シートを作製 正極の性能に対する NMP の影響を研究する準備ができています 水性バインダー LA132 を使用して作成されたシート。 実験 水性バインダー LA132、超電導 カーボンブラック、脱イオン水、LiFePO4を一括してスラリー状に調製 比率は 2.5:2.5:50:4...
    続きを読む
先頭ページ 1 2 最後のページ
[  の合計  2  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社