-
リチウムイオン電池の高エネルギー密度化を目指して、シリコン系負極が有望な候補として浮上しています。しかし、その実用化は、体積膨張の著しい増大や、特にリチウム化の不均一性といった課題によって阻まれています。本稿では、この問題の原因、悪影響、そしてそれを緩和するための先進的な解決策について考察します。これは、リチウムイオン電池に関わるすべての人にとって重要な検討事項です。 バッテリー生産 そして バッテリー研究 。 期間中 リチウム化 のプロセス シリコン系陽極材料 材料固有の微細構造の不均一性、電解質分布の不均一性、電流密度分布の不均一性といった要因により、リチウム化の不均一性が生じる可能性があります。例えば、シリコンナノ粒子が凝集している領域では、リチウムイオンの拡散経路が長くなり、局所的な電界分布が不均一になるため、リチウム化の速度が遅くなります。一方、シリコン粒子の表面や欠陥の多い部位...
続きを読む
-
I. 電力バッテリーシステムの構造設計 パワーバッテリーシステムの構造は、セル、モジュール、バッテリーパックから構成されます。セルは最も基本的なユニットであり、その構造設計と材料の選択がバッテリーの性能を決定づけます。現在主流のセルの種類には、円筒形、角形、パウチ形セルがあり、それぞれエネルギー密度、安全性、コストの面で一定の利点があります。例えば、円筒形セルはエネルギー密度が高くコストが低いものの、安全性は比較的低いのに対し、角形セルは安全性とコストのバランスが取れています。パウチ形セルは早くから登場し、3C用途で広く使用されており、パワーアプリケーションで勢いを増しており、大きな開発の可能性を秘めています。モジュールは通常、一定数のセルを直列または並列に接続し、熱管理システムと電気接続部を備えて構成されます。モジュール設計の目的は、セルを外部環境の影響から保護し、バッテリーシステム全体...
続きを読む