へようこそ XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 日本語
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

  • バッテリーグレードPAAの性能特性と応用研究の実践
    Jun 25 , 2025
    I. ポリアクリレート(PAA)バインダーの特性と利点 電解質溶媒での膨潤が最小限: 膨潤が少なく、充電/放電サイクル中に電極シートの構造的完全性を維持します。 カルボキシル基の割合が高い: 極性カルボキシル基の密度が高いため、ヒドロキシル含有活性物質と強力な水素結合が形成され、分散安定性が向上します。 連続フィルム形成: 材料表面に均一なフィルムを作成し、活物質と集電体間の接触を改善します。 優れた機械的安定性: 電極製造時の加工が容易になります。 強化された SEI 形成およびサイクル性能: 高濃度の極性官能基がシリコン材料表面との水素結合を促進し、安定した固体電解質界面 (SEI) 層の形成を助け、優れたサイクル寿命を実現します。 II. 開発上の課題 従来の電極用PAA(ポリアクリル酸)バインダーシステムでは、架橋PAAポリマーを負極バインダーとして用いるのが一般的です。高分子ポリ...
    続きを読む
  • リチウムイオン電池の自己放電の理由
    Jul 15 , 2025
    リチウムイオン電池の自己放電とは、外部回路から切り離された状態(開回路状態)で電池の充電量/電圧が自然に低下する現象を指します。これはすべての電池に備わった特性ですが、程度は異なります。リチウムイオン電池の自己放電率は比較的低いものの、それでも影響を受けます。主な原因は以下のように分類できます。 1. 避けられない化学反応(通常の自己放電) (1)SEI層の成長と溶解: 負極(通常はグラファイト)は、初期の充放電時に形成される固体電解質界面(SEI)層で覆われており、これはバッテリーの動作に不可欠です。しかし、SEI層は完全に安定しているわけではありません。保管中、特に高温下では、SEI層はゆっくりと溶解し、再形成します。この再形成によりリチウムイオンと電解液が消費され、容量低下と電圧降下を引き起こします。これは自己放電の大きな要因です。 (2)電解質の酸化還元: 充電正極材料(例:LiC...
    続きを読む
  • シリコンカーボンアノード材料の性能向上戦略
    Nov 10 , 2025
    Ⅰ. シリコンカーボンアノード材料の性能上の利点と課題 (1)シリコンの電気化学的特性 リチウムイオン電池の負極研究において、シリコンは理論上の比容量が極めて高いことから大きな注目を集めています。シリコンは完全リチウム化されると、比容量が4200mAh/gに達する合金を形成でき、これは従来のグラファイトの約10倍に相当します。この特性は、電池のエネルギー密度を高めるための強固な材料基盤となります。リチウムの挿入・抽出プロセスは、主にシリコンとリチウム間の可逆的な合金化反応に依存しています。シリコンは優れた比容量という利点から、高エネルギー密度負極材料の中核候補となっています。しかし、リチウム化の過程でシリコン粒子は著しい体積膨張を起こし、実験データに基づくと300%を超え、炭素系材料の変形範囲をはるかに超えます。この大きな体積変化は、活物質間の接触を徐々に緩め、粒子間の導電経路を阻害し、電...
    続きを読む
先頭ページ 1 2 3 最後のページ
[  の合計  3  ページ数]

伝言を残す

    当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください、できるだけ早く返信します。

ホーム

製品

会社