シリコンベースのアノード材料にはどのようなバインダーが必要ですか?
Aug 25, 2023
リチウムイオン電池では、バインダーは電極構造の安定性に影響を与える重要な要素の 1 つです。リチウムイオン電池用バインダーは、分散媒の性質により、有機溶媒を分散剤とする油系バインダーと水を分散剤とする水系バインダーに分けられます。Liu Xin ら [3] は、高容量負極用バインダーの研究の進捗状況をレビューしました。ポリフッ化ビニリデン (PVDF) 変性バインダーと水ベースのバインダーの用途を考えると、高容量負極電気化学の性能を向上させることができます。しかし、シリコン系負極のバインダーについては議論も比較もされていない。 この論文では、著者らはシリコンベースのアノード材料用バインダーに関する研究の進歩の概要を示し、さまざまなタイプのバインダーの長所と短所を比較します。 1. 油性バインダー 油性バインダーの中で、PVDF のホモポリマーおよびコポリマーが最も広く使用されています。 1.1 PVDFホモポリマーバインダー リチウムイオン電池の大規模生産では、PVDF がバインダーとして一般的に使用され、N-メチル ピロリドン (NMP) などの有機溶媒が分散剤として使用されます。PVDF は粘度および電気化学的安定性が良好ですが、電子伝導性およびイオン伝導性が劣ります。有機溶媒は揮発性、引火性、爆発性があり、毒性が非常に高いです。さらに、PVDF は弱いファンデルワールス力によってのみ Si ベースのアノード材料に結合するため、Si の劇的な体積変化に対応できません。従来のタイプの PVDF はシリコンベースのアノード材料には適していません [3 ~ 5]。 1.2 PVDF改質バインダー シリコンベースのアノード材料に適用される PVDF の電気化学的性能を向上させるために、一部の学者は共重合や熱処理などの改質方法を提案しています [4-5]。ZH Chen と他の学者 [4] は、ターポリマーのポリフッ化ビニリデン-テトラフルオロエチレン-エチレン共重合体 [P(VDF-TFE-P)] が PVDF の機械的特性と粘弾性を向上させることを発見しました。J. Li と他の学者 [5] はそれを発見しました。アルゴン保護下で 300°C で熱処理すると、PVDF の分散と粘弾性が向上します。修飾されたPVDF/Si電極は、600mAh/gの比容量で、0.17〜0.90V、150mA/gで50回サイクルされた。PVDF/Si 電極を改質および処理することにより、サイクル性能は向上しましたが、サイクル安定性はまだ満足のいくものではありませんでした。 2. 水系バインダー 油性バインダーと比較して、水性バインダーは環境に優しく、安価で安全に使用できるため、徐々に人気が高まっています。現在、より研究されているシリコンベースのアノード材料バインダーは、カルボキシメチルセルロースナトリウム (CMC) やポリアクリル酸 (PAA) などの水ベースのバインダーです。 2.1 スチレンブタジエンゴム ( SBR )/カルボキシメチルセルロースナトリウム除去剤 ( CMC ) バインダー SBR/CMC は粘弾性と分散性に優れており、黒鉛系負極の大量生産に広く使用されています。W. R Liu と他の学者 [6] は、(SBR/CMC)/Si 電極は 1000 mAh/g の定容量 (0 ~ 1.2 V) で 60 回充電および放電できる、電気化学的性能が PVDF/Si 電極よりも優れていることを発見しました。ただし、60 サイクルはサイクル安定性の適切な指標ではありません。 2.2 CMCバインダー より粘弾性の高い SBR/CMC およびポリエチレンアクリル酸 (PEAA)/CMC と比較します。弾性に欠ける CMC バインダーの方がシリコンベースのアノード材料に適していると考える人もいます [7-8]。J. Li および他の学者 [7] は、CMC/Si 電極は 0.17 ~ 0.90 V、150 mA/g で 70 回サイクルし、比容量は 1100 mAh/g であり、(SBR/CMC)/Si および PVDF よりも優れていることを発見しました。 /Si電極。B. Lestriez と他の学者 [8] は次のことを発見しました: CMC/Si 電極の電気化学的性能は (PEAA/CMC)/Si 電極の電気化学的性能よりも優れています。その理由は、PEAA がカーボン ブラックを凝集させる傾向があり、これがカーボン ブラックの凝集に影響を与えるためです。電極のサイクル安定性。化学結合 (共有結合またはα結合 [12-13]) を通じて、CMC のカルボキシメチル基は Si に結合できます。その強い結合力により、Si 粒子間の接続を維持できます。また、CMC は、Si の表面に固体電解質相界面膜 (SEI) のようなコーティングを形成し、電解質の分解を抑制します。 CMC をバインダーとして使用すると電極は良好な電気化学的特性を示しますが、CMC の置換度 (DS) と電極比、pH 値などは、CMC/Si 電極の電気化学的特性に異なる影響を与えます。度。JS Bridel ら [12-14] は、m(Si):m(C):<n(CMC) = 1:1:1 の場合、リチウムが完全に埋め込まれた場合、電極部分の膨張は 48% のみであることを発見しました。は最高のサイクル性能を持っていますが、現時点では Si 含有量が低く、バッテリーのエネルギー密度が低くなります。M. Gauthier と他の学者 [9、11] は、さまざまな pH 値で調製された CMC/Si 電極の性能を比較しました。電極の最高の性能は、CMC/ミクロン Si 電極が使用される pH = 3 の緩衝液で調製されたことがわかりました。 [3] 005 ~ 1000 V、480 mA/g で 600 回サイクル、比容量は 1 600 mAh/g [91]。さらに、DS の適切な増加は CMC/Si 電極の電気化学的性能の向上に役立ち、DS < 1.2 の CMC/Si 電極はより優れたサイクル性能を備えています [10-12]。 CMC バインダーは応用の可能性が高いですが、CMC は一般に粘着性があり、脆く、柔軟性があまり高くないため、充電および放電中に磁極片に亀裂が入りやすくなります [13]。さらに、CMC は電極比や pH などの条件に強く影響されます。価値があるため、さらなる研究が必要です。 2.3 PAAバインダー PAA は分子構造が単純で、合成が容易で、水および一部の有機溶媒に可溶です。いくつかの研究では、シリコンベースのアノード材料の 15% には、CMC よりもカルボキシル基含有量が高い PAA の方が適していることが示されています。Magasinski と他の学者 [15] は次のことを発見しました: PAA は Si と強い水素結合相互作用を形成するだけでなく、Si の表面に CMC よりも均一なクラッドを形成することができます。PAA/Si 電極は 0.01 ~ で 1...
もっと見る